搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称冲击-卸载实验中纵波声速的特征线分析方法

潘昊 吴子辉 胡晓棉

非对称冲击-卸载实验中纵波声速的特征线分析方法

潘昊, 吴子辉, 胡晓棉
PDF
导出引用
  • 材料高压声速是获取材料在冲击下的剪切模量、强度和相变信息的重要物理量, 对于研究材料在高速冲击下的行为非常重要. 由于飞片、样品和窗口材料阻抗失配等因素, 传统的声速分析方法无法对非对称冲击-卸载实验中单样品的窗口界面速度进行准确的分析. 本文在反向特征线方法的基础上, 考虑了飞片与样品、样品和窗口界面的相互作用, 建立了适合于仅含单一厚度样品的非对称冲击-卸载实验的特征线声速分析方法, 通过对数值实验给出的速度剖面的分析表明, 该方法能够较为准确地获得待测材料高压下的声速及卸载路径.
      通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn
    [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [2] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [3] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [4] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [5] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [6] 邓小良, 宋振飞, 贺红亮, 祝文军, 经福谦. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [7] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [8] 伍登学, 贺红亮, 邓小良, 祝文军, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [9] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [10] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [11] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [12] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [13] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [14] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [15] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [16] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [17] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [18] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [19] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [20] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质. 物理学报, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
  • 引用本文:
    Citation:
计量
  • 文章访问数:  972
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-03-16
  • 刊出日期:  2016-06-05

非对称冲击-卸载实验中纵波声速的特征线分析方法

  • 1. 北京应用物理与计算数学研究所, 计算物理重点实验室, 北京 100088;
  • 2. 中国工程物理研究院研究生部, 北京 100088
  • 通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn

摘要: 材料高压声速是获取材料在冲击下的剪切模量、强度和相变信息的重要物理量, 对于研究材料在高速冲击下的行为非常重要. 由于飞片、样品和窗口材料阻抗失配等因素, 传统的声速分析方法无法对非对称冲击-卸载实验中单样品的窗口界面速度进行准确的分析. 本文在反向特征线方法的基础上, 考虑了飞片与样品、样品和窗口界面的相互作用, 建立了适合于仅含单一厚度样品的非对称冲击-卸载实验的特征线声速分析方法, 通过对数值实验给出的速度剖面的分析表明, 该方法能够较为准确地获得待测材料高压下的声速及卸载路径.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回