搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域共振型加筋板的弯曲波带隙与减振特性

朱席席 肖勇 温激鸿 郁殿龙

局域共振型加筋板的弯曲波带隙与减振特性

朱席席, 肖勇, 温激鸿, 郁殿龙
PDF
导出引用
导出核心图
  • 通过在加筋板结构上附加周期性排列的弹簧-质量共振子单元,构造了一种局域共振型加筋板结构. 针对这种新型结构,基于有限元法和周期结构Bloch定理,建立了其弹性波传播与振动特性理论计算方法;采用该方法深入研究了局域共振型加筋板的弯曲波带隙特性和减振特性. 研究表明,局域共振子能够对加筋板的弯曲波传播特性产生显著影响,一方面使其产生更加低频的带隙,另一方面还能拓宽其中高频带隙. 进一步深入分析了共振子的弹簧刚度、共振子的质量对带隙特性和减振特性的影响,发现了有价值的带隙调控现象、规律和减振特性,可为局域共振型加筋板的带隙特性设计与工程减振应用提供理论指导和有益参考.
      通信作者: 肖勇, xiaoy@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:51305448)和航空科学基金(批准号:2015ZA88003)资助的课题.
    [1]

    Xiao Y 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖勇 2012 博士学位论文 (长沙: 国防科技大学)]

    [2]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Wen J H, Yu D L, Zhao H G, Cai L, Xiao Y, Wang G, Yin J F 2015 Propagation of Elastic Waves in Artificial Periodic Structures: Vibrational and Acoustical Properties (Beijing: Science Press) pp5-200 (in Chinese) [温激鸿, 郁殿龙, 赵宏刚, 蔡力, 肖勇, 王刚, 尹剑飞 2015 人工周期结构中弹性波的传播-振动与声学特性 (北京:科学出版社) 第5-200页]

    [4]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) pp53-195 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第53-195页]

    [5]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [6]

    Brillouin L 1946 Wave Propagation in Periodic Structures (New York: Dover) pp115-117

    [7]

    Xiao Y, Wen J H, Yu D L, Wen X S 2013 J. Sound Vib. 332 867

    [8]

    Xiao Y, Wen J H, Huang L 2014 J. Phys. D: Appl. Phys. 47 045307

    [9]

    Wang G 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王刚 2005 博士学位论文 (长沙:国防科技大学)]

    [10]

    Hsu J C 2011 J. Phys. D: Appl. Phys. 44 055401

    [11]

    Oudich M, Li Y, Assouar B M, Hou Z 2010 New J. Phys. 12 083049

    [12]

    Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O, Hladky-Hennion A C 2008 Phys. Rev. B 78 104105

    [13]

    Zhang S, Wu J, Hu Z 2013 J. Appl. Phys. 113 163511

    [14]

    Xiao Y, Wen J, Wen X 2012 J. Phys. D: Appl. Phys. 19 195401

    [15]

    Xiao Y, Wen J, Wen X 2012 J. Sound Vib. 331 5408

    [16]

    Assouar B M, Sun J, Lin F, Hsu J 2014 Ultrasonics 54 2159

    [17]

    Wu J, Bai X, Xiao Y, Geng X, Yu D, Wen J 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [18]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese) [刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302]

    [19]

    Wang X Z, Pang F Z, Yao X L, Su N 2012 Acta Mech. Solida Sin. 33 583 (in Chinese) [王献忠, 庞福振, 姚熊亮, 苏楠 2012 固体力学学报 33 583]

    [20]

    Jin Y Q, Pang F Z, Yao X L, Wang X Z 2012 J. Vib. Eng. 25 579 (in Chinese) [金叶青, 庞福振, 姚熊亮, 王献忠 2012 振动工程学报 25 579]

    [21]

    Yao X L, Wang X Z, Pang F Z, Kang P H 2012 J. Huazhong Univ. of Sci. Tech. (Natural Science Edition) 40 119 (in Chinese) [姚熊亮, 王献忠, 庞福振, 康蓬辉 2012 华中科技大学学报 40 119]

    [22]

    Li S, Zhao D Y 2001 Acta Acustica. 26 174 (in Chinese) [黎胜, 赵德有 2001 声学学报 26 174]

    [23]

    Li S, Zhao D Y 2004 Acta Acustica. 29 200 (in Chinese) [黎胜, 赵德有 2004 声学学报 29 200]

    [24]

    Lu T J, Xin F X 2012 Vibroacoustics of Lightweight Sandwich Structures (Beijing: Science Press) pp80-157 (in Chinese) [卢天健, 辛锋先 2012 轻质板壳结构设计的振动和声学基础 (北京:科学出版社) 第80-157页]

    [25]

    Xin F X, Lu T J, Chen C Q 2010 J. Vib. Acoust. 132 011008

    [26]

    Maurice P 1990 Introduction to finite element vibration analysis (New York: Cambridge University Press) pp229-313

    [27]

    Xu S Y, Huang X C, Hua H X 2013 J. ShangHai JiaoTong Univ. 47 167 (in Chinese) [徐时吟, 黄修长, 华宏星 2013 上海交通大学学报 47 167]

    [28]

    Song Y, Feng L, Wen J, Yu D, Wen X 2015 Compos. Struct. 128 428

    [29]

    Langley R S 1993 J. Sound Vib. 169 377

    [30]

    Farzbod F, Leamy M J 2009 J. Sound Vib. 325 545

  • [1]

    Xiao Y 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖勇 2012 博士学位论文 (长沙: 国防科技大学)]

    [2]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Wen J H, Yu D L, Zhao H G, Cai L, Xiao Y, Wang G, Yin J F 2015 Propagation of Elastic Waves in Artificial Periodic Structures: Vibrational and Acoustical Properties (Beijing: Science Press) pp5-200 (in Chinese) [温激鸿, 郁殿龙, 赵宏刚, 蔡力, 肖勇, 王刚, 尹剑飞 2015 人工周期结构中弹性波的传播-振动与声学特性 (北京:科学出版社) 第5-200页]

    [4]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) pp53-195 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第53-195页]

    [5]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [6]

    Brillouin L 1946 Wave Propagation in Periodic Structures (New York: Dover) pp115-117

    [7]

    Xiao Y, Wen J H, Yu D L, Wen X S 2013 J. Sound Vib. 332 867

    [8]

    Xiao Y, Wen J H, Huang L 2014 J. Phys. D: Appl. Phys. 47 045307

    [9]

    Wang G 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王刚 2005 博士学位论文 (长沙:国防科技大学)]

    [10]

    Hsu J C 2011 J. Phys. D: Appl. Phys. 44 055401

    [11]

    Oudich M, Li Y, Assouar B M, Hou Z 2010 New J. Phys. 12 083049

    [12]

    Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O, Hladky-Hennion A C 2008 Phys. Rev. B 78 104105

    [13]

    Zhang S, Wu J, Hu Z 2013 J. Appl. Phys. 113 163511

    [14]

    Xiao Y, Wen J, Wen X 2012 J. Phys. D: Appl. Phys. 19 195401

    [15]

    Xiao Y, Wen J, Wen X 2012 J. Sound Vib. 331 5408

    [16]

    Assouar B M, Sun J, Lin F, Hsu J 2014 Ultrasonics 54 2159

    [17]

    Wu J, Bai X, Xiao Y, Geng X, Yu D, Wen J 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [18]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese) [刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302]

    [19]

    Wang X Z, Pang F Z, Yao X L, Su N 2012 Acta Mech. Solida Sin. 33 583 (in Chinese) [王献忠, 庞福振, 姚熊亮, 苏楠 2012 固体力学学报 33 583]

    [20]

    Jin Y Q, Pang F Z, Yao X L, Wang X Z 2012 J. Vib. Eng. 25 579 (in Chinese) [金叶青, 庞福振, 姚熊亮, 王献忠 2012 振动工程学报 25 579]

    [21]

    Yao X L, Wang X Z, Pang F Z, Kang P H 2012 J. Huazhong Univ. of Sci. Tech. (Natural Science Edition) 40 119 (in Chinese) [姚熊亮, 王献忠, 庞福振, 康蓬辉 2012 华中科技大学学报 40 119]

    [22]

    Li S, Zhao D Y 2001 Acta Acustica. 26 174 (in Chinese) [黎胜, 赵德有 2001 声学学报 26 174]

    [23]

    Li S, Zhao D Y 2004 Acta Acustica. 29 200 (in Chinese) [黎胜, 赵德有 2004 声学学报 29 200]

    [24]

    Lu T J, Xin F X 2012 Vibroacoustics of Lightweight Sandwich Structures (Beijing: Science Press) pp80-157 (in Chinese) [卢天健, 辛锋先 2012 轻质板壳结构设计的振动和声学基础 (北京:科学出版社) 第80-157页]

    [25]

    Xin F X, Lu T J, Chen C Q 2010 J. Vib. Acoust. 132 011008

    [26]

    Maurice P 1990 Introduction to finite element vibration analysis (New York: Cambridge University Press) pp229-313

    [27]

    Xu S Y, Huang X C, Hua H X 2013 J. ShangHai JiaoTong Univ. 47 167 (in Chinese) [徐时吟, 黄修长, 华宏星 2013 上海交通大学学报 47 167]

    [28]

    Song Y, Feng L, Wen J, Yu D, Wen X 2015 Compos. Struct. 128 428

    [29]

    Langley R S 1993 J. Sound Vib. 169 377

    [30]

    Farzbod F, Leamy M J 2009 J. Sound Vib. 325 545

  • [1] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性. 物理学报, 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [2] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [3] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [4] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [5] 刘敏, 侯志林, 傅秀军. 二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究. 物理学报, 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [6] 尹剑飞, 温激鸿, 肖勇, 温熙森. 基于高级统计能量分析的周期加筋板振动特性研究. 物理学报, 2015, 64(13): 134301. doi: 10.7498/aps.64.134301
    [7] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [8] 李晓春, 梁宏宇, 易秀英, 肖清武, 赵保星. 二维组合宽带隙材料的研究. 物理学报, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [9] 华 佳, 张 舒, 程建春. 三元周期结构声禁带形成机理. 物理学报, 2005, 54(3): 1261-1266. doi: 10.7498/aps.54.1261
    [10] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [11] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [12] 赵艳影, 李昌爱. 时滞反馈控制扭转振动系统的振动. 物理学报, 2011, 60(11): 114305. doi: 10.7498/aps.60.114305
    [13] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [14] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [15] 姜文全, 杜广煜, 巴德纯, 杨帆. 多孔金属薄膜阻尼减振微观机理研究. 物理学报, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [16] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [17] 高明, 吴志强. 一维三振子周期结构带隙设计 . 物理学报, 2013, 62(14): 140507. doi: 10.7498/aps.62.140507
    [18] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [19] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [20] 赵艳影, 杨如铭. 利用时滞反馈控制自参数振动系统饱和控制减振频带. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
  • 引用本文:
    Citation:
计量
  • 文章访问数:  548
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-17
  • 修回日期:  2016-06-02
  • 刊出日期:  2016-09-05

局域共振型加筋板的弯曲波带隙与减振特性

  • 1. 国防科学技术大学机电工程与自动化学院, 装备综合保障技术重点实验室, 长沙 410073
  • 通信作者: 肖勇, xiaoy@vip.sina.com
    基金项目: 

    国家自然科学基金(批准号:51305448)和航空科学基金(批准号:2015ZA88003)资助的课题.

摘要: 通过在加筋板结构上附加周期性排列的弹簧-质量共振子单元,构造了一种局域共振型加筋板结构. 针对这种新型结构,基于有限元法和周期结构Bloch定理,建立了其弹性波传播与振动特性理论计算方法;采用该方法深入研究了局域共振型加筋板的弯曲波带隙特性和减振特性. 研究表明,局域共振子能够对加筋板的弯曲波传播特性产生显著影响,一方面使其产生更加低频的带隙,另一方面还能拓宽其中高频带隙. 进一步深入分析了共振子的弹簧刚度、共振子的质量对带隙特性和减振特性的影响,发现了有价值的带隙调控现象、规律和减振特性,可为局域共振型加筋板的带隙特性设计与工程减振应用提供理论指导和有益参考.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回