搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络规模衰减的随机生灭网络平均度

张晓军 钟守铭

网络规模衰减的随机生灭网络平均度

张晓军, 钟守铭
PDF
导出引用
导出核心图
  • 在社会和生物网络中,每个智能体都存在生与灭过程,这些演化网络可能存在一些特殊的性质.近年来,这些生灭网络受到了广泛的关注,大部分的生灭网络的研究都聚焦于度分布的求解和它们的性质.本文研究了节点增加概率0pmq;利用这些性质,运用生成函数法求解出不同网络规模的平均度的精确表达式;最后,采用数值模拟方法验证了平均度的精确求解结果和性质,讨论了平均度与节点增加概率p以及连接数m之间的关系.
      通信作者: 张晓军, sczhxj@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61273015)资助的课题.
    [1]

    Adamic L A, Huberman B A, Barábasi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [2]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [3]

    Guimerà R, Arenas A, Díaz-Guilera A, Giralt F 2002 Phys. Rev. E 66 026704

    [4]

    Williams R J, Martinez N D 2000 Nature 404 180

    [5]

    Otto S B, Rall B C, Brose U 2007 Nature 450 1226

    [6]

    Dorogovtsev S N, Mendes J F F 2001 Phys. Rev. E 63 056125

    [7]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [8]

    Sarshar N, Roychowdhury V 2004 Phys. Rev. E 69 026101

    [9]

    Slater J L, Hughes B D, Landman K A 2006 Phys. Rev. E 73 066111

    [10]

    Moore C, Ghoshal G, Newman M E J 2006 Phys. Rev. E 74 036121

    [11]

    Farid N, Christensen K 2006 New. J. Phys. 8 212

    [12]

    Saldaña J 2007 Phys. Rev. E 75 027102

    [13]

    Ben-Naim E, Krapivsky P L 2007 J. Phys. A 40 8607

    [14]

    Cai K Y, Dong Z, Liu K, Wu X Y 2011 Stoch. Proc. Appl. 121 885

    [15]

    Zhang X J, He Z, Rayman-Bacchus L 2016 J. Stat. Phys. 162 842

    [16]

    Zhang X J, Yang H L 2016 Chin. Phys. B 25 060202

    [17]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [18]

    Krapivsky P L, Redner S, Leyvraz F 2000 Phys. Rev. Lett. 85 4629

    [19]

    Dorogovtsev S N, Mendes J F F, Samukhin A N 2000 Phys. Rev. Lett. 85 4633

    [20]

    Dorogovtsev S N 2003 Phys. Rev. E 67 045102

    [21]

    Krapivsky P L, Redner S 2002 J. Phys. A 35 9517

    [22]

    Shi D H, Chen Q H, Liu L M 2005 Phys. Rev. E 71 036140

    [23]

    Zheng J F, Gao Z Y, Zhao H 2007 Physica A 376 719

    [24]

    Zhang X J, He Z S, He Z, Lez R B 2012 Physica A 391 3350

    [25]

    Tang L, Wang B 2010 Physica A 389 2147

    [26]

    Smith D M D, Onnela J P, Jones N S 2009 Phys. Rev. E 79 056101

    [27]

    Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103

    [28]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014物理学报63 208902]

    [29]

    Yu X P, Pei T 2013 Acta Phys. Sin. 62 208901(in Chinese)[余晓平, 裴韬2013物理学报62 208901]

  • [1]

    Adamic L A, Huberman B A, Barábasi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [2]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [3]

    Guimerà R, Arenas A, Díaz-Guilera A, Giralt F 2002 Phys. Rev. E 66 026704

    [4]

    Williams R J, Martinez N D 2000 Nature 404 180

    [5]

    Otto S B, Rall B C, Brose U 2007 Nature 450 1226

    [6]

    Dorogovtsev S N, Mendes J F F 2001 Phys. Rev. E 63 056125

    [7]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [8]

    Sarshar N, Roychowdhury V 2004 Phys. Rev. E 69 026101

    [9]

    Slater J L, Hughes B D, Landman K A 2006 Phys. Rev. E 73 066111

    [10]

    Moore C, Ghoshal G, Newman M E J 2006 Phys. Rev. E 74 036121

    [11]

    Farid N, Christensen K 2006 New. J. Phys. 8 212

    [12]

    Saldaña J 2007 Phys. Rev. E 75 027102

    [13]

    Ben-Naim E, Krapivsky P L 2007 J. Phys. A 40 8607

    [14]

    Cai K Y, Dong Z, Liu K, Wu X Y 2011 Stoch. Proc. Appl. 121 885

    [15]

    Zhang X J, He Z, Rayman-Bacchus L 2016 J. Stat. Phys. 162 842

    [16]

    Zhang X J, Yang H L 2016 Chin. Phys. B 25 060202

    [17]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [18]

    Krapivsky P L, Redner S, Leyvraz F 2000 Phys. Rev. Lett. 85 4629

    [19]

    Dorogovtsev S N, Mendes J F F, Samukhin A N 2000 Phys. Rev. Lett. 85 4633

    [20]

    Dorogovtsev S N 2003 Phys. Rev. E 67 045102

    [21]

    Krapivsky P L, Redner S 2002 J. Phys. A 35 9517

    [22]

    Shi D H, Chen Q H, Liu L M 2005 Phys. Rev. E 71 036140

    [23]

    Zheng J F, Gao Z Y, Zhao H 2007 Physica A 376 719

    [24]

    Zhang X J, He Z S, He Z, Lez R B 2012 Physica A 391 3350

    [25]

    Tang L, Wang B 2010 Physica A 389 2147

    [26]

    Smith D M D, Onnela J P, Jones N S 2009 Phys. Rev. E 79 056101

    [27]

    Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103

    [28]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014物理学报63 208902]

    [29]

    Yu X P, Pei T 2013 Acta Phys. Sin. 62 208901(in Chinese)[余晓平, 裴韬2013物理学报62 208901]

  • [1] 吕翎, 邹家蕊, 杨明, 孟乐, 郭丽, 柴元. 大规模富社团网络的时空混沌同步. 物理学报, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [2] 胡耀光, 王圣军, 金涛, 屈世显. 度关联无标度网络上的有倾向随机行走. 物理学报, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [3] 邢长明, 刘方爱, 徐如志. 无标度立体Koch网络上随机游走的平均吸收时间. 物理学报, 2012, 61(20): 200503. doi: 10.7498/aps.61.200503
    [4] 钭斐玲, 胡延庆, 黎勇, 樊瑛, 狄增如. 空间网络上的随机游走. 物理学报, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [5] 吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波. 基于平均场理论的微博传播网络模型. 物理学报, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [6] 韩华, 吴翎燕, 宋宁宁. 基于随机矩阵的金融网络模型. 物理学报, 2014, 63(13): 138901. doi: 10.7498/aps.63.138901
    [7] 孔祥星, 侯振挺, 赵清贵. 简易广义合作网络度分布的稳定性. 物理学报, 2009, 58(10): 6682-6685. doi: 10.7498/aps.58.6682
    [8] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [9] 余晓平, 裴韬. 手机通话网络度特征分析. 物理学报, 2013, 62(20): 208901. doi: 10.7498/aps.62.208901
    [10] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [11] 于海涛, 王江, 刘晨, 车艳秋, 邓斌, 魏熙乐. 耦合小世界神经网络的随机共振. 物理学报, 2012, 61(6): 068702. doi: 10.7498/aps.61.068702
    [12] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [13] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [14] 孟续军, 孙永盛, 李世昌. 原子平均离化度的研究. 物理学报, 1994, 43(3): 345-350. doi: 10.7498/aps.43.345
    [15] 刘光杰, 单 梁, 戴跃伟, 孙金生, 王执铨. 基于混沌神经网络的单向Hash函数. 物理学报, 2006, 55(11): 5688-5693. doi: 10.7498/aps.55.5688
    [16] 蔡金涛. 电网络行列式展开之简捷法. 物理学报, 1939, 7(2): 148-181. doi: 10.7498/aps.3.148
    [17] 张培培, 何 阅, 苏蓓蓓, 常 慧, 周月平, 何大韧, 周 涛, 汪秉宏. 一个描述合作网络顶点度分布的模型. 物理学报, 2006, 55(1): 60-67. doi: 10.7498/aps.55.60
    [18] 闫小勇, 王明生. 增长速度对合作网络参与者节点度分布的影响. 物理学报, 2010, 59(2): 851-858. doi: 10.7498/aps.59.851
    [19] 王景欣, 王钺, 李一鹏, 袁坚, 山秀明, 冯振明, 任勇. 基于资源流行度的对等网络统计特征分析. 物理学报, 2011, 60(11): 118901. doi: 10.7498/aps.60.118901
    [20] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度. 物理学报, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
  • 引用本文:
    Citation:
计量
  • 文章访问数:  510
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-06-30
  • 刊出日期:  2016-12-05

网络规模衰减的随机生灭网络平均度

  • 1. 电子科技大学数学科学学院, 成都 611731
  • 通信作者: 张晓军, sczhxj@uestc.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61273015)资助的课题.

摘要: 在社会和生物网络中,每个智能体都存在生与灭过程,这些演化网络可能存在一些特殊的性质.近年来,这些生灭网络受到了广泛的关注,大部分的生灭网络的研究都聚焦于度分布的求解和它们的性质.本文研究了节点增加概率0pmq;利用这些性质,运用生成函数法求解出不同网络规模的平均度的精确表达式;最后,采用数值模拟方法验证了平均度的精确求解结果和性质,讨论了平均度与节点增加概率p以及连接数m之间的关系.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回