搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系

高铭泽 张沛红

纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系

高铭泽, 张沛红
PDF
导出引用
导出核心图
  • 利用硅烷偶联剂改性纳米SiO2,制得改性纳米SiO2分散液和改性纳米SiO2颗粒.分别利用机械法和气泡法制备纳米SiO2含量为2 wt%,3 wt%,4 wt%,5 wt%和6 wt%的未改性纳米SiO2复合环氧树脂和改性纳米SiO2复合环氧树脂,测试了复合环氧树脂的击穿特性和耐电晕特性.测试结果表明,复合环氧树脂的击穿场强和耐电晕性随纳米SiO2含量的增加而增加,击穿场强在5 wt%纳米SiO2含量时达到最大值,气泡法制备的改性纳米SiO2复合环氧树脂的击穿场强和耐电晕性优于所制备的其他复合环氧树脂.以5 wt%纳米SiO2含量复合环氧树脂为例,通过森下氏分散指数(Morisita's index)方法对复合环氧树脂中纳米SiO2的分散性进行定量表征,得出气泡法制得的纳米SiO2/环氧树脂复合材料的分散性优于机械法制备的复合材料.研究发现纳米SiO2在环氧树脂基体中分散性越好,复合材料的击穿特性和耐电晕性越好.
      通信作者: 张沛红, zph@hrbust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51277044)资助的课题.
    [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016物理学报 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016物理学报 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1884
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-09-11
  • 刊出日期:  2016-12-05

纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系

  • 1. 哈尔滨理工大学电气与电子工程学院, 电介质工程国家重点实验室培育基地, 哈尔滨 150080
  • 通信作者: 张沛红, zph@hrbust.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51277044)资助的课题.

摘要: 利用硅烷偶联剂改性纳米SiO2,制得改性纳米SiO2分散液和改性纳米SiO2颗粒.分别利用机械法和气泡法制备纳米SiO2含量为2 wt%,3 wt%,4 wt%,5 wt%和6 wt%的未改性纳米SiO2复合环氧树脂和改性纳米SiO2复合环氧树脂,测试了复合环氧树脂的击穿特性和耐电晕特性.测试结果表明,复合环氧树脂的击穿场强和耐电晕性随纳米SiO2含量的增加而增加,击穿场强在5 wt%纳米SiO2含量时达到最大值,气泡法制备的改性纳米SiO2复合环氧树脂的击穿场强和耐电晕性优于所制备的其他复合环氧树脂.以5 wt%纳米SiO2含量复合环氧树脂为例,通过森下氏分散指数(Morisita's index)方法对复合环氧树脂中纳米SiO2的分散性进行定量表征,得出气泡法制得的纳米SiO2/环氧树脂复合材料的分散性优于机械法制备的复合材料.研究发现纳米SiO2在环氧树脂基体中分散性越好,复合材料的击穿特性和耐电晕性越好.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回