搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性

马超 闵道敏 李盛涛 郑旭 李西育 闵超 湛海涯

聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性

马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯
PDF
导出引用
导出核心图
  • 聚丙烯电介质的直流击穿场强是影响其储能密度的关键因素,纳米氧化铝掺杂是一种提高聚合物电介质击穿场强的有效方法,因此有必要开展聚丙烯/氧化铝纳米电介质直流击穿特性的研究.为了探究其直流击穿机理,通过熔融共混法制备了聚丙烯/氧化铝纳米电介质试样,观察了其显微结构,并对其表面电位衰减特性、体电阻率和直流击穿场强进行了测试.实验结果表明,随着纳米氧化铝含量的增加,深陷阱能级和密度、体电阻率和直流击穿场强都呈现先升高后降低的趋势,当纳米氧化铝含量为0.5 wt%时出现最大值,其中,直流击穿场强相比于未掺杂时可提高27%左右.根据纳米电介质交互区模型,分析了聚丙烯/氧化铝纳米电介质的显微结构和陷阱参数之间的关系.基于空间电荷击穿理论,利用陷阱参数对聚丙烯/氧化铝纳米电介质直流击穿机理进行了探讨.认为交互区为聚丙烯/氧化铝纳米电介质提供了更多深陷阱,而深陷阱能级和密度在较高纳米掺杂量时出现不同程度的降低可能是由双电层模型交互区重叠所致;深陷阱能级和密度的增加可降低载流子的注入量,进而提高其体电阻率和直流击穿场强.
      通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB251003)、清华大学电力系统国家重点实验室开放课题(批准号:SKLD16KZ04)、中国博士后科学基金(批准号:2014M552449)、中央高校基本科研业务费(批准号:xjj2014022)和西安交通大学新教师支持计划(批准号:DWSQc130000008)资助的课题.
    [1]

    Rabuffi M, Picci G 2002 IEEE Trans. Plas. Sci. 30 1939

    [2]

    Li H, Wang B W, Li Z W, Liu D, Lin F C, Dai L, Zhang Q, Chen Y H 2013 Rev. Sci. Instrum. 84 104707

    [3]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334

    [4]

    Wang Q, Zhu L 2011 J. Polym. Sci. Part B: Polym. Phys. 49 1421

    [5]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y, Wang H 2015 Adv. Mater. 27 6658

    [6]

    Kolesov S N 1980 IEEE Trans. Electr. Insul. 15 382

    [7]

    Gao L Y, Tu D M, Zhou S C, Zhang Z L 1990 IEEE Trans. Electr. Insul. 25 535

    [8]

    Yuan X P, Chung T C M 2011 Appl. Phys. Lett. 98 062901

    [9]

    Tian F Q, Yang C, He L J, Han B, Wang Y, Lei Q Q 2011 Trans. China Electrotech. Soc. 26 1 (in Chinese) [田付强, 杨春, 何丽娟, 韩柏, 王毅, 雷清泉 2011 电工技术学报 26 1]

    [10]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [11]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Electr. Insul. 12 669

    [12]

    Raetzke S, Kindersberger J 2010 IEEE Trans. Electr. Insul. 17 607

    [13]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Electr. Insul. 18 1535

    [14]

    Wang F P, Xia Z F, Zhang X Q, Huang J F, Shen J 2007 Acta Phys. Sin. 56 6061 (in Chinese) [王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈军 2007 物理学报 56 6061]

    [15]

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702 (in Chinese) [陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 物理学报 64 237702]

    [16]

    Gao J G, Hu H T, Zheng J, Yu L, Zhang X H 2010 Insul. Mater. 43 47 (in Chinese) [高俊国, 胡海涛, 郑杰, 俞利, 张晓虹 2010 绝缘材料 43 47]

    [17]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]

    [18]

    Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1259

    [19]

    Virtanen S, Ranta H, Ahonen S, Karttunen M, Pelto J, Kannus K, Pettersson M 2014 J. Appl. Polymer Sci. 131 39504

    [20]

    Rytluoto I, Lahti K, Karttunen M, Koponen M, Virtanen S, Pettersson M 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2196

    [21]

    Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777

    [22]

    Kozako M, Yamano S, Kido R, Ohki Y, Kohtoh M, Okabe S, Tanaka T 2005 Proceedings of 2005 International Symposium on Electrical Insulating Materials Kitakyushu, Japan, June 5-9, 2005 p231

    [23]

    Wang W W 2015 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [王威望 2015 博士学位论文 (西安: 西安交通大学)]

    [24]

    Li J Y, Zhou F S, Min D M, Li S T, Xia R 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723

    [25]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego, California: Elsevier) pp327-514

    [26]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: The Institution of Engineering and Technology) pp217-237

    [27]

    Matsui K, Tanaka Y, Takada T, Fukao T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406

    [28]

    Ho J, Jow T R 2012 IEEE Trans. Dielectr. Elect. Insul. 19 990

    [29]

    Ikezaki K, Kaneko T, Sakakibara T 1981 Jpn. J. Appl. Phys. 20 609

    [30]

    Li H, Li Z W, Xu Z J, Lin F C, Wang B W, Li H Y, Zhang Q, Wang W J, Huang X 2014 IEEE Trans. Plasm. Sci. 42 3585

    [31]

    Liu C D, Zheng F H, An Z L, Zhang Y W 2013 J. Hubei Univ. (Nat. Sci.) 35 320 (in Chinese) [刘川东, 郑飞虎, 安振连, 张冶文 2013 湖北大学学报 (自然科学版) 35 320]

  • [1]

    Rabuffi M, Picci G 2002 IEEE Trans. Plas. Sci. 30 1939

    [2]

    Li H, Wang B W, Li Z W, Liu D, Lin F C, Dai L, Zhang Q, Chen Y H 2013 Rev. Sci. Instrum. 84 104707

    [3]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334

    [4]

    Wang Q, Zhu L 2011 J. Polym. Sci. Part B: Polym. Phys. 49 1421

    [5]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y, Wang H 2015 Adv. Mater. 27 6658

    [6]

    Kolesov S N 1980 IEEE Trans. Electr. Insul. 15 382

    [7]

    Gao L Y, Tu D M, Zhou S C, Zhang Z L 1990 IEEE Trans. Electr. Insul. 25 535

    [8]

    Yuan X P, Chung T C M 2011 Appl. Phys. Lett. 98 062901

    [9]

    Tian F Q, Yang C, He L J, Han B, Wang Y, Lei Q Q 2011 Trans. China Electrotech. Soc. 26 1 (in Chinese) [田付强, 杨春, 何丽娟, 韩柏, 王毅, 雷清泉 2011 电工技术学报 26 1]

    [10]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [11]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Electr. Insul. 12 669

    [12]

    Raetzke S, Kindersberger J 2010 IEEE Trans. Electr. Insul. 17 607

    [13]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Electr. Insul. 18 1535

    [14]

    Wang F P, Xia Z F, Zhang X Q, Huang J F, Shen J 2007 Acta Phys. Sin. 56 6061 (in Chinese) [王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈军 2007 物理学报 56 6061]

    [15]

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702 (in Chinese) [陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 物理学报 64 237702]

    [16]

    Gao J G, Hu H T, Zheng J, Yu L, Zhang X H 2010 Insul. Mater. 43 47 (in Chinese) [高俊国, 胡海涛, 郑杰, 俞利, 张晓虹 2010 绝缘材料 43 47]

    [17]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 物理学报 63 177701]

    [18]

    Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1259

    [19]

    Virtanen S, Ranta H, Ahonen S, Karttunen M, Pelto J, Kannus K, Pettersson M 2014 J. Appl. Polymer Sci. 131 39504

    [20]

    Rytluoto I, Lahti K, Karttunen M, Koponen M, Virtanen S, Pettersson M 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2196

    [21]

    Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777

    [22]

    Kozako M, Yamano S, Kido R, Ohki Y, Kohtoh M, Okabe S, Tanaka T 2005 Proceedings of 2005 International Symposium on Electrical Insulating Materials Kitakyushu, Japan, June 5-9, 2005 p231

    [23]

    Wang W W 2015 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [王威望 2015 博士学位论文 (西安: 西安交通大学)]

    [24]

    Li J Y, Zhou F S, Min D M, Li S T, Xia R 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723

    [25]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego, California: Elsevier) pp327-514

    [26]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: The Institution of Engineering and Technology) pp217-237

    [27]

    Matsui K, Tanaka Y, Takada T, Fukao T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406

    [28]

    Ho J, Jow T R 2012 IEEE Trans. Dielectr. Elect. Insul. 19 990

    [29]

    Ikezaki K, Kaneko T, Sakakibara T 1981 Jpn. J. Appl. Phys. 20 609

    [30]

    Li H, Li Z W, Xu Z J, Lin F C, Wang B W, Li H Y, Zhang Q, Wang W J, Huang X 2014 IEEE Trans. Plasm. Sci. 42 3585

    [31]

    Liu C D, Zheng F H, An Z L, Zhang Y W 2013 J. Hubei Univ. (Nat. Sci.) 35 320 (in Chinese) [刘川东, 郑飞虎, 安振连, 张冶文 2013 湖北大学学报 (自然科学版) 35 320]

  • [1] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [2] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响. 物理学报, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [3] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响. 物理学报, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [4] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [5] 胡 瑾, 杜 磊, 周 江, 庄奕琪, 包军林. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [6] 彭绍泉, 杜 磊, 何 亮, 陈伟华, 庄奕琪, 包军林. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型. 物理学报, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [7] 谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏. Y2O3: Eu,Dy的制备与红色长余辉发光性能研究. 物理学报, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [8] 周东方, 戚泽明, 刘波, 施朝淑, 汤洪高, 胡关钦. 掺Gd3+,Y3+对PbWO_4低温热释光的影响. 物理学报, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [9] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [10] 王建立, 顾明, 张兴, 熊国平, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [11] 朱智恩, 张冶文, 安振连, 郑飞虎. 电介质陷阱能量分布的光刺激放电法实验研究. 物理学报, 2010, 59(7): 5067-5072. doi: 10.7498/aps.59.5067
    [12] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究. 物理学报, 2015, 64(4): 046101. doi: 10.7498/aps.64.046101
    [13] 李正瀛. 电负性混合气体临界击穿场强与电子附着速率的探讨. 物理学报, 1990, 39(9): 1400-1406. doi: 10.7498/aps.39.1400
    [14] 冯若. 聚丙烯酰胺水溶液的超声研究. 物理学报, 1980, 178(7): 940-944. doi: 10.7498/aps.29.940
    [15] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [16] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究. 物理学报, 2014, 63(17): 177701. doi: 10.7498/aps.63.177701
    [17] 刘付德, 杨百屯, 屠德民, 刘耀南. 固体电介质的电老化与击穿新理论和实验. 物理学报, 1992, 41(2): 333-341. doi: 10.7498/aps.41.333
    [18] 李国倡, 李盛涛. 空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述. 物理学报, 2019, 68(23): 239401. doi: 10.7498/aps.68.20191252
    [19] 朱智恩, 张冶文, 安振连, 郑飞虎. 用光刺激放电法研究纳米粉末掺杂低密度聚乙烯中陷阱能级. 物理学报, 2012, 61(6): 067701. doi: 10.7498/aps.61.067701
    [20] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
  • 引用本文:
    Citation:
计量
  • 文章访问数:  539
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2016-12-10
  • 刊出日期:  2017-03-20

聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性

  • 1. 西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049;
  • 2. 西安西电电气研究院有限责任公司技术研究中心, 西安 710077;
  • 3. 西安西电电力电容器有限责任公司研发处, 西安 710082
  • 通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2015CB251003)、清华大学电力系统国家重点实验室开放课题(批准号:SKLD16KZ04)、中国博士后科学基金(批准号:2014M552449)、中央高校基本科研业务费(批准号:xjj2014022)和西安交通大学新教师支持计划(批准号:DWSQc130000008)资助的课题.

摘要: 聚丙烯电介质的直流击穿场强是影响其储能密度的关键因素,纳米氧化铝掺杂是一种提高聚合物电介质击穿场强的有效方法,因此有必要开展聚丙烯/氧化铝纳米电介质直流击穿特性的研究.为了探究其直流击穿机理,通过熔融共混法制备了聚丙烯/氧化铝纳米电介质试样,观察了其显微结构,并对其表面电位衰减特性、体电阻率和直流击穿场强进行了测试.实验结果表明,随着纳米氧化铝含量的增加,深陷阱能级和密度、体电阻率和直流击穿场强都呈现先升高后降低的趋势,当纳米氧化铝含量为0.5 wt%时出现最大值,其中,直流击穿场强相比于未掺杂时可提高27%左右.根据纳米电介质交互区模型,分析了聚丙烯/氧化铝纳米电介质的显微结构和陷阱参数之间的关系.基于空间电荷击穿理论,利用陷阱参数对聚丙烯/氧化铝纳米电介质直流击穿机理进行了探讨.认为交互区为聚丙烯/氧化铝纳米电介质提供了更多深陷阱,而深陷阱能级和密度在较高纳米掺杂量时出现不同程度的降低可能是由双电层模型交互区重叠所致;深陷阱能级和密度的增加可降低载流子的注入量,进而提高其体电阻率和直流击穿场强.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回