搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布里渊动态光栅原理及其在光纤传感中的应用

董永康 周登望 滕雷 姜桃飞 陈曦

引用本文:
Citation:

布里渊动态光栅原理及其在光纤传感中的应用

董永康, 周登望, 滕雷, 姜桃飞, 陈曦

Principle of Brillouin dynamic grating and its applications in optical fiber sensing

Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi
PDF
导出引用
  • 自从2007年布里渊动态光栅被首次提出用于实现光存储以来,该技术得到了国际上的广泛关注和研究.布里渊动态光栅本质上是由相干声波场激发的折射率光栅,一般情况下两束抽运光(频率差等于光纤的布里渊频移)以相同的偏振态从光纤两端注入到光纤中,通过受激布里渊散射效应激发出相干声波场,即形成布里渊动态光栅.光纤布里渊动态光栅因具有全光产生、参数灵活可控的优点,已被广泛研究应用于光纤传感、光纤特性表征、光存储、全光信号处理、微波光子学和高精度光谱分析等.本文分析布里渊动态光栅产生和探测原理,重点探讨在高性能分布式光纤传感上的应用,这些应用包括高灵敏度温度和应变分布式传感、温度和应变同时解调、分布式横向压力传感、分布式静压力(气压或液压)传感、高空间分辨率分布式传感和高精度光谱分析.
    Brillouin dynamic grating (BDG) has been widely studied since it was proposed for the first time to achieve optical storage in 2007. In general, when two beams of pump light (their frequency difference equal to Brillouin frequency shift of the optical fiber) with the same polarization state are injected into the fiber, the coherent acoustic wave can be excited by the stimulated Brillouin scattering effect, forming a BDG. The BDG in an optical fiber has been widely used in optical fiber sensing, characterization of optical fibers, optical storage, all-optical signal processing, microwave photonics and high-precision spectral analysis due to the advantages of all-optical generation and flexible parameter control. In this paper, we analyze the principle of BDG generation and detection, and its applications in optical fiber sensing. The simultaneous measuring of strain and temperature is achieved within a spatial resolution of 20 cm through measuring Brillouin frequency shift and birefringence-induced frequency shift in a polarization-maintaining fiber. A high-sensitivity distributed transverse load sensor based on BDG with a measurement accuracy as high as 0.810-3 N/mm is proposed and demonstrated, whose principle is to measure the transverse-load-induced birefringence change through exciting and probing a BDG in an elliptical-core polarization maintaining fiber. On the basis of the above research, a distributed measurement of hydrostatic pressure is demonstrated by using a 4-m photonics crystal fiber with a measurement error less than 0.03 MPa at a 20-cm spatial resolution, while the temperature cross-talk to the hydrostatic pressure sensing can be compensated for through measuring the temperature-induced Brillouin frequency shift changes by using Brillouin optical time-domain analysis. A system based on BDG in polarization maintaining fibers is reported to achieve a spatial resolution below one centimeter, while preserving the full accuracy on the determination of temperature and strain through measuring Brillouin frequency shift. Taking advantage of creating a long BDG in an optical fiber, an ultra-narrow bandwidth optical filter is realized by operating a BDG in a single-mode fiber, and the optical spectrometry is performed by sweeping the center wavelength of the BDG-based filter through a swept-tuned laser, where a 4 fm (0.5 MHz) spectral resolution is achieved by operating a BDG in a 400 m single-mode fiber.
      通信作者: 董永康, aldendong@gmail.com
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2013YQ040815)、国家自然科学基金(批准号:61575052,61308004)和国家高技术研究发展计划(批准号:2014AA110401)资助的课题.
      Corresponding author: Dong Yong-Kang, aldendong@gmail.com
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ040815), the National Natural Science Foundation of China (Grant Nos. 61575052, 61308004), and the National High Technology Research and Development Program of China (Grant No. 2014AA110401).
    [1]

    Horiguchi T, Tateda M 1989Opt. Lett. 14 408

    [2]

    Horiguchi T, Kurashima T, Tateda M 1989IEEE Photon. Technol. Lett. 1 107

    [3]

    Kurashima T, Horiguchi T, Tateda M 1990IEEE Photon. Technol. Lett. 2 718

    [4]

    Kurashima T, Horiguchi T, Tateda M 1990Appl. Opt. 29 2219

    [5]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993Opt. Lett. 18 185

    [6]

    Bao X Y, Webb D J, Jackon D A 1993Opt. Lett. 18 552

    [7]

    Mizuno Y, Zou W, He Z, Hotate K 2008Opt. Express 16 12148

    [8]

    Hotate K, Hasegawa T 2000 IEICE Trans. Electron. E83-c 405

    [9]

    Dong Y K, Zhang H Y, Chen L, Bao X Y 2012 Appl. Opt. 511229

    [10]

    Dong Y K, Chen L, Bao X Y 2012J. Lightw. Technol. 30 1161

    [11]

    Ba D X, Wang B Z, Zhou D W, Yin M J, Dong Y K, Li H, Lu Z W, Fan Z G 2016Opt. Express 24 9781

    [12]

    Zhu Z, Gauthier D J, Boyd R W 2007 Science 318 1748

    [13]

    Sancho J, Primerov N, Chin S, et al. 2012 Opt. Express 20 6157

    [14]

    Santagiustina M, Chin S, Primerov N, Ursini L, Thvenaz L 2013 Sci. Rep. 31 594

    [15]

    Zou W, He Z, Hotate K 2009 Opt. Express 17 1248

    [16]

    Zou W, He Z, Hotate K 2011Opt. Express 19 2363

    [17]

    Dong Y K, Chen L, Bao X Y 2010IEEE Photon. Technol. Lett. 22 1364

    [18]

    Dong Y K, Chen L, Bao X Y 2010Opt. Lett. 35 193

    [19]

    Dong Y K, Zhang H Y, Lu Z W, Chen L, Bao X Y 2013 J. Lightw. Technol. 31 2681

    [20]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

    [21]

    Dong Y K, Teng L, Tong P L, Jiang T F, Zhang H Y, Zhu T, Chen L, Bao X Y, Lu Z W 2015Opt. Lett. 40 5003

    [22]

    Teng L, Zhang H Y, Dong Y K, Zhou D W, Jiang T F, Gao W, Lu Z W, Chen L, Bao X Y 2016Opt. Lett. 41 4413

    [23]

    Dong Y K, Zhang H Y, Zhou D P, Bao X Y, Chen L 2012IEEE Sens. J. 12 189

  • [1]

    Horiguchi T, Tateda M 1989Opt. Lett. 14 408

    [2]

    Horiguchi T, Kurashima T, Tateda M 1989IEEE Photon. Technol. Lett. 1 107

    [3]

    Kurashima T, Horiguchi T, Tateda M 1990IEEE Photon. Technol. Lett. 2 718

    [4]

    Kurashima T, Horiguchi T, Tateda M 1990Appl. Opt. 29 2219

    [5]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993Opt. Lett. 18 185

    [6]

    Bao X Y, Webb D J, Jackon D A 1993Opt. Lett. 18 552

    [7]

    Mizuno Y, Zou W, He Z, Hotate K 2008Opt. Express 16 12148

    [8]

    Hotate K, Hasegawa T 2000 IEICE Trans. Electron. E83-c 405

    [9]

    Dong Y K, Zhang H Y, Chen L, Bao X Y 2012 Appl. Opt. 511229

    [10]

    Dong Y K, Chen L, Bao X Y 2012J. Lightw. Technol. 30 1161

    [11]

    Ba D X, Wang B Z, Zhou D W, Yin M J, Dong Y K, Li H, Lu Z W, Fan Z G 2016Opt. Express 24 9781

    [12]

    Zhu Z, Gauthier D J, Boyd R W 2007 Science 318 1748

    [13]

    Sancho J, Primerov N, Chin S, et al. 2012 Opt. Express 20 6157

    [14]

    Santagiustina M, Chin S, Primerov N, Ursini L, Thvenaz L 2013 Sci. Rep. 31 594

    [15]

    Zou W, He Z, Hotate K 2009 Opt. Express 17 1248

    [16]

    Zou W, He Z, Hotate K 2011Opt. Express 19 2363

    [17]

    Dong Y K, Chen L, Bao X Y 2010IEEE Photon. Technol. Lett. 22 1364

    [18]

    Dong Y K, Chen L, Bao X Y 2010Opt. Lett. 35 193

    [19]

    Dong Y K, Zhang H Y, Lu Z W, Chen L, Bao X Y 2013 J. Lightw. Technol. 31 2681

    [20]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

    [21]

    Dong Y K, Teng L, Tong P L, Jiang T F, Zhang H Y, Zhu T, Chen L, Bao X Y, Lu Z W 2015Opt. Lett. 40 5003

    [22]

    Teng L, Zhang H Y, Dong Y K, Zhou D W, Jiang T F, Gao W, Lu Z W, Chen L, Bao X Y 2016Opt. Lett. 41 4413

    [23]

    Dong Y K, Zhang H Y, Zhou D P, Bao X Y, Chen L 2012IEEE Sens. J. 12 189

  • [1] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [3] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究. 物理学报, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [4] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [5] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [7] 高玮, 刘胜男, 毕雅凤, 胡晓博, 浦绍质, 赵洪. 液芯光纤中基于多线抽运调制的带宽可控平顶布里渊增益谱. 物理学报, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [8] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [9] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [10] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [11] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [12] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [13] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [14] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [15] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [16] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [17] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
    [18] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响. 物理学报, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [19] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  8387
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-04-05

/

返回文章
返回