搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管

赵逸涵 段宝兴 袁嵩 吕建梅 杨银堂

引用本文:
Citation:

具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管

赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂

Novel lateral double-diffused MOSFET with vertical assisted deplete-substrate layer

Zhao Yi-Han, Duan Bao-Xing, Yuan Song, Lü Jian-Mei, Mei Yang
PDF
导出引用
  • 为了优化横向双扩散金属氧化物半导体场效应晶体管(lateral double-diffused MOSFET,LDMOS)的击穿特性及器件性能,在传统LDMOS结构的基础上,提出了一种具有纵向辅助耗尽衬底层(assisted deplete-substrate layer,ADSL)的新型LDMOS.新加入的ADSL层使得漏端下方的纵向耗尽区大幅向衬底扩展,从而利用电场调制效应在ADSL层底部引入新的电场峰,使纵向电场得到优化,同时横向表面电场也因为电场调制效应而得到了优化.通过ISE仿真表明,当传统LDMOS与ADSL LDMOS的漂移区长度都是70 m时,击穿电压由462 V增大到897 V,提高了94%左右,并且优值也从0.55 MW/cm2提升到1.24 MW/cm2,提升了125%.因此,新结构ADSL LDMOS的器件性能较传统LDMOS有了极大的提升.进一步对ADSL层进行分区掺杂优化,在新结构的基础上,击穿电压在双分区时上升到938 V,三分区时为947 V.
    Lateral double-diffused MOSFETs (LDMOS) are widely used in high voltage integrate circuits and smart power integrate circuits because of their lateral channels and their electrodes located on the surface of the device, thereby facilitating integration with other low-voltage circuits and devices, and they have become the core technology of the second electronic revolution. In order to optimize the breakdown characteristics and the performance of the LDMOS, in this paper, a novel LDMOS is proposed with the vertical assisted deplete-substrate layer (ADSL) on the basis of traditional LDMOS structure. The new ADSL layer makes the vertical depletion region below the drain expand to substrate excessively, thus introduces a new electric field peak at the bottom of the ADSL layer by using the electric field modulation effect, so that the vertical electric field is optimized. The ISE simulation results show that when the lengths of the drift region of ADSL LDMOS and traditional LDMOS are both 70 m, the breakdown voltage is increased from 462 V to 897 V, improved by about 94%. Also, the figure-of-merit (FOM) is upgraded from 0.55 MW/cm2 to 1.24 MW/cm2, increased by 125%. Therefore, the new structure ADSL LDMOS has a great improvement in device performance compared with that of the traditional LDMOS. Moreover, authors have studied the ADSL LDMOS from three parts, all of these confirm that the new structure has a great potential application in power device. Firstly, through the lateral surface electric field distributions and vertical electric filed distributions of conventional LDMOS and ADSL LDMOS, a new electric field peak at the bottom of the ADSL is introduced in the vertical direction. Secondly, the mechanism for the new structure can present a deeper understanding through the ADSL LDMOS concentration and structural parameter optimization process. The FOM is optimized when the drift region concentration and ADSL concentration are 1.81015 cm-3 and 6.51015 cm-3, respectively, and it can reach a best value when the ADSL length is 40 m. Thirdly, the ADSL layer is further partitioned and optimized. On the basis of the new structure, the breakdown voltage is increased to 938 V when the new structure is based on the dual partition, and in the triple partition the breakdown voltage reaches 947 V. In this paper, through simulations, the detailed analyses of the proposed new structure of the mechanism and its performance are conducted, and the breaking of the breakdown characteristics of silicon-based devices is of special significance for developing the lateral power devices.
      通信作者: 段宝兴, bxduan@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339900,2015CB351906)和国家自然科学基金重点项目(批准号:61234006,61334002)资助的课题.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339900, 2015CB351906) and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    Yi B, Chen X B 2017 IEEE Trans. Power Electron. 32 551

    [2]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 26th International Symposium on Power Semiconductor Devices IC's Waikoloa, Hawaii, June 15-19, 2014 p127

    [3]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 26th International Symposium on Power Semiconductor Devices IC's Waikoloa, Hawaii, June 15-19, 2014 p171

    [4]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [5]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301 (in Chinese)[段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 物理学报 63 247301]

    [6]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Saha D 2012 IEEE Electron. Device Lett. 33 1690

    [7]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron. Device Lett. 33 212

    [8]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron. Device Lett. 33 1132

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron. Device Lett. 33 1171

    [10]

    Lee H S, Piedra D, Sun M, Gao X, Guo S, Palacios T 2012 IEEE Electron. Device Lett. 33 982

    [11]

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Band Gap Semiconductor Material and Electronic Device (1st Ed.) (Beijing:Science Press) pp1-5(in Chinese)[郝跃, 张金凤, 张进成2013氮化物宽禁带半导体材料与电子器件(第一版) (北京:科学出版社)第15页]

    [12]

    Jha S, Jelenkovic E V, Pejovic M M, Ristic G S, Pejovic M, Tong K Y, Surya C, Bello I, Zhang W J 2009 Microelectron. Eng. 86 37

    [13]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517

    [14]

    Appels J A, Vaes H M J 1979 International Electron Devices Meeting Washington, D. C., December 3-5, 1979 p238

    [15]

    Wei J, Luo X R, Ma D, Wu J F, Li Z J, Zhang B 2016 Proceedings of the 28th International Symposium on Power Semiconductor Devices IC's Prague, Czech Republic, June 12-16, 2016 p171

    [16]

    Qiao M, Wang Y R, Zhou X, Jin F, Wang H H, Wang Z, Li Z J, Zhang B 2015 IEEE Electron. Device Lett. 62 2933

    [17]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron. Device Lett. 36 47

    [18]

    Duan B X, Cao Z, Yuan S, Yang Y T 2015 IEEE Electron. Device Lett. 36 1348

    [19]

    Zhang W T, Qiao M, Wu L J, Ye K, Wang Z, Wang Z G, Luo X R, Zhang S, Su W, Zhang B, Li Z J 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices IC's Kanazawa, Japan, May 26-30, 2013 p329

    [20]

    Luo X R, Li Z J, Zhang B, Fu D P, Zhan Z, Chen K F, Hu S D, Zhang Z Y, Feng Z C, Yan B 2008 IEEE Electron. Device Lett. 29 1395

    [21]

    ISE TCAD Manuals, release 10, Synopsys

  • [1]

    Yi B, Chen X B 2017 IEEE Trans. Power Electron. 32 551

    [2]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 26th International Symposium on Power Semiconductor Devices IC's Waikoloa, Hawaii, June 15-19, 2014 p127

    [3]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 26th International Symposium on Power Semiconductor Devices IC's Waikoloa, Hawaii, June 15-19, 2014 p171

    [4]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [5]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301 (in Chinese)[段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 物理学报 63 247301]

    [6]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Saha D 2012 IEEE Electron. Device Lett. 33 1690

    [7]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron. Device Lett. 33 212

    [8]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron. Device Lett. 33 1132

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron. Device Lett. 33 1171

    [10]

    Lee H S, Piedra D, Sun M, Gao X, Guo S, Palacios T 2012 IEEE Electron. Device Lett. 33 982

    [11]

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Band Gap Semiconductor Material and Electronic Device (1st Ed.) (Beijing:Science Press) pp1-5(in Chinese)[郝跃, 张金凤, 张进成2013氮化物宽禁带半导体材料与电子器件(第一版) (北京:科学出版社)第15页]

    [12]

    Jha S, Jelenkovic E V, Pejovic M M, Ristic G S, Pejovic M, Tong K Y, Surya C, Bello I, Zhang W J 2009 Microelectron. Eng. 86 37

    [13]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517

    [14]

    Appels J A, Vaes H M J 1979 International Electron Devices Meeting Washington, D. C., December 3-5, 1979 p238

    [15]

    Wei J, Luo X R, Ma D, Wu J F, Li Z J, Zhang B 2016 Proceedings of the 28th International Symposium on Power Semiconductor Devices IC's Prague, Czech Republic, June 12-16, 2016 p171

    [16]

    Qiao M, Wang Y R, Zhou X, Jin F, Wang H H, Wang Z, Li Z J, Zhang B 2015 IEEE Electron. Device Lett. 62 2933

    [17]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron. Device Lett. 36 47

    [18]

    Duan B X, Cao Z, Yuan S, Yang Y T 2015 IEEE Electron. Device Lett. 36 1348

    [19]

    Zhang W T, Qiao M, Wu L J, Ye K, Wang Z, Wang Z G, Luo X R, Zhang S, Su W, Zhang B, Li Z J 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices IC's Kanazawa, Japan, May 26-30, 2013 p329

    [20]

    Luo X R, Li Z J, Zhang B, Fu D P, Zhan Z, Chen K F, Hu S D, Zhang Z Y, Feng Z C, Yan B 2008 IEEE Electron. Device Lett. 29 1395

    [21]

    ISE TCAD Manuals, release 10, Synopsys

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响. 物理学报, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] 唐春萍, 段宝兴, 宋坤, 王彦东, 杨银堂. 衬底浮空的新型绝缘体上硅基横向功率器件分析. 物理学报, 2021, 70(14): 148501. doi: 10.7498/aps.70.20202065
    [5] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [6] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究. 物理学报, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [8] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件. 物理学报, 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [9] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件. 物理学报, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [10] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [11] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [12] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [13] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构. 物理学报, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [14] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [15] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计. 物理学报, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析. 物理学报, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  5141
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2017-01-10
  • 刊出日期:  2017-04-05

/

返回文章
返回