搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性

起俊丰 钟祝强 王广娜 夏光琼 吴正茂

高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性

起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂
PDF
导出引用
导出核心图
  • 基于光反馈半导体激光器(SL)速率方程模型,理论仿真研究了高斯切趾型光纤布拉格光栅(GAFBG)反馈SL(GAFBGF-SL)混沌输出的延时特征(TDS)以及混沌带宽特性.结果表明:随着反馈强度的增加,GAFBGF-SL表现出由准周期进入混沌的动力学演化路径;通过合理选择GAFBG布拉格频率与SL中心频率之间的频率失谐及反馈强度,GAFBGF-SL混沌输出的TDS能得到有效抑制(低于0.02);通过进一步绘制混沌信号TDS及带宽在GAFBG布拉格频率与SL中心频率之间的频率失谐和反馈强度构成的参量空间中的分布图,确定了获取弱TDS、宽带宽光混沌信号的参数范围.
    [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1] 张依宁, 冯玉玲. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191881
    [2] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [3] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [4] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [5] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [6] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [8] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [9] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [10] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型. 物理学报, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [11] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [12] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [13] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [14] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [15] 黄良玉, 罗晓曙, 赵益波, 唐国宁, 方锦清. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [16] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [17] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器. 物理学报, 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
    [18] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究. 物理学报, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [19] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [20] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
  • 引用本文:
    Citation:
计量
  • 文章访问数:  318
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-23
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-12-20

高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性

    基金项目: 

    国家自然科学基金(批准号:61475127,61575163,61775184)资助的课题.

摘要: 基于光反馈半导体激光器(SL)速率方程模型,理论仿真研究了高斯切趾型光纤布拉格光栅(GAFBG)反馈SL(GAFBGF-SL)混沌输出的延时特征(TDS)以及混沌带宽特性.结果表明:随着反馈强度的增加,GAFBGF-SL表现出由准周期进入混沌的动力学演化路径;通过合理选择GAFBG布拉格频率与SL中心频率之间的频率失谐及反馈强度,GAFBGF-SL混沌输出的TDS能得到有效抑制(低于0.02);通过进一步绘制混沌信号TDS及带宽在GAFBG布拉格频率与SL中心频率之间的频率失谐和反馈强度构成的参量空间中的分布图,确定了获取弱TDS、宽带宽光混沌信号的参数范围.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回