搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兴奋性作用诱发神经簇放电个数不增反降的分岔机制

曹奔 关利南 古华光

兴奋性作用诱发神经簇放电个数不增反降的分岔机制

曹奔, 关利南, 古华光
PDF
导出引用
导出核心图
  • 非线性动力学在识别神经放电的复杂现象、机制和功能方面发挥了重要作用.不同于传统观念,本文提出了兴奋性作用可以降低而不是增加簇内放电个数的新观点.在簇放电模式休止期的适合相位施加强度合适的脉冲或自突触电流,能诱发簇内放电个数降低;电流的施加相位越早,所需的强度阈值越大,簇内放电个数越少.进一步,利用快慢变量分离获得的簇放电的动力学性质进行了理论解释.簇放电模式表现出低电位的休止期和高电位的放电的交替,存在于快子系统的鞍结分岔点和同宿轨分岔点之间;放电起始于鞍结分岔、结束于同宿轨分岔;越靠近同宿轨分岔从休止期跨越到放电所需的电流强度越大.因此,电流在休止期上的作用相位越早,就越靠近同宿轨分岔,因而从休止期跨越到放电需要的电流强度阈值越大,放电起始相位到同宿轨分岔之间的区间变小导致放电个数变少.研究结果丰富了非线性现象及机制,对兴奋性作用提出了新看法,给出了调控簇放电模式的新途径.
    • 基金项目: 国家自然科学基金(批准号:11872276,11572225,11372224)资助的课题.
    [1]

    Glass L 2001 Nature 410 277

    [2]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [3]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [4]

    Braun H A, Schwabedal J, Dewald M, Finke C, Postnova S, Huber M T, Wollweber B, Schneider H, Hirsch M C, Voigt K, Feudel U, Moss F 2011 Chaos 21 047509

    [5]

    Gu H G, Pan B B 2015 Nonlinear Dyn. 81 2107

    [6]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113

    [7]

    Wang X J, Rinzel J 1992 Neural Comput. 4 84

    [8]

    Wang X J, Rinzel J 1993 Neuroscience 53 899

    [9]

    van V C, Abbott L F, Bard E G 1994 J. Comput. Neurosci. 1 313

    [10]

    Cobb S R, Buhl E H, Halasy K, Paulsen O, Somogyi P 1995 Nature 378 75

    [11]

    Bose A, Kunec S 2001 Neurocomputing 38 505

    [12]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166

    [13]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [14]

    Gu H G, Zhao Z G 2015 PloS One 10 e0138593

    [15]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599

    [16]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549

    [17]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030

    [18]

    Tamas G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [19]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [20]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [21]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64

    [24]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743

    [25]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PloS One 9 e100849

    [26]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. Astron. 57 1918

    [27]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3242

    [28]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [29]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001

    [30]

    Guo D Q, Wu S D, Chen M M, Perc M, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y, Yao D Z 2016 Sci. Rep. 6 14

    [31]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [32]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [33]

    Gong Y, Wang B, Xie H 2016 Biosystems 150 132

    [34]

    Yang X, Yu Y, Sun Z 2017 Chaos 27 083117

    [35]

    Lisman J E 1997 Trends Neurosci. 20 38

    [36]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161

    [37]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [38]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [39]

    Rinzel J 1987 Lecture Notes in Biomathematics (Berlin: Springer-Verlag) p267

    [40]

    Buschle L R, Kurz F T, Kampf T, Wagner W L, Dueer J, Stiller W, Konietzke P, Wünnemann F, Mall M A, Wielpütz M O, Schlemmer H P, Ziener C H 2017 Phys. Rev. E 95 022415

    [41]

    Tsutome H, Yuichi H, Takao O, Masahiro T 2009 Phys. Rev. E 80 051921

    [42]

    Guo D Q 2011 Cogn. Neurodyn. 5 293

    [43]

    Chen F, Xia L, Li C G 2012 Chin. Phys. Lett. 29 070501

    [44]

    Guo D Q, Wang Q Y, Perc M 2012 Phys. Rev. E 85 061905

    [45]

    Wang Q Y, Murks A, Perc M, Lu Q S 2011 Chin. Phys. B 20 040504

  • [1]

    Glass L 2001 Nature 410 277

    [2]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [3]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [4]

    Braun H A, Schwabedal J, Dewald M, Finke C, Postnova S, Huber M T, Wollweber B, Schneider H, Hirsch M C, Voigt K, Feudel U, Moss F 2011 Chaos 21 047509

    [5]

    Gu H G, Pan B B 2015 Nonlinear Dyn. 81 2107

    [6]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113

    [7]

    Wang X J, Rinzel J 1992 Neural Comput. 4 84

    [8]

    Wang X J, Rinzel J 1993 Neuroscience 53 899

    [9]

    van V C, Abbott L F, Bard E G 1994 J. Comput. Neurosci. 1 313

    [10]

    Cobb S R, Buhl E H, Halasy K, Paulsen O, Somogyi P 1995 Nature 378 75

    [11]

    Bose A, Kunec S 2001 Neurocomputing 38 505

    [12]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166

    [13]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [14]

    Gu H G, Zhao Z G 2015 PloS One 10 e0138593

    [15]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599

    [16]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549

    [17]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030

    [18]

    Tamas G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [19]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [20]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [21]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64

    [24]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743

    [25]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PloS One 9 e100849

    [26]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. Astron. 57 1918

    [27]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3242

    [28]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [29]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001

    [30]

    Guo D Q, Wu S D, Chen M M, Perc M, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y, Yao D Z 2016 Sci. Rep. 6 14

    [31]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [32]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [33]

    Gong Y, Wang B, Xie H 2016 Biosystems 150 132

    [34]

    Yang X, Yu Y, Sun Z 2017 Chaos 27 083117

    [35]

    Lisman J E 1997 Trends Neurosci. 20 38

    [36]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161

    [37]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [38]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [39]

    Rinzel J 1987 Lecture Notes in Biomathematics (Berlin: Springer-Verlag) p267

    [40]

    Buschle L R, Kurz F T, Kampf T, Wagner W L, Dueer J, Stiller W, Konietzke P, Wünnemann F, Mall M A, Wielpütz M O, Schlemmer H P, Ziener C H 2017 Phys. Rev. E 95 022415

    [41]

    Tsutome H, Yuichi H, Takao O, Masahiro T 2009 Phys. Rev. E 80 051921

    [42]

    Guo D Q 2011 Cogn. Neurodyn. 5 293

    [43]

    Chen F, Xia L, Li C G 2012 Chin. Phys. Lett. 29 070501

    [44]

    Guo D Q, Wang Q Y, Perc M 2012 Phys. Rev. E 85 061905

    [45]

    Wang Q Y, Murks A, Perc M, Lu Q S 2011 Chin. Phys. B 20 040504

  • [1] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191709
    [2] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔. 物理学报, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [3] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [4] 张化光, 王占山. 时滞递归神经网络中神经抑制的作用. 物理学报, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [5] 张丽萍, 徐敏, 王惠南. 一个三时滞生物捕食被捕食系统分岔的混合控制. 物理学报, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [6] 徐昌进. 厄尔尼诺-南方波涛动时滞海气振子耦合模型的分岔分析 . 物理学报, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [7] 许 进, 张 强, 高 琳, 王 超. 时滞双向联想记忆神经网络的全局稳定性. 物理学报, 2003, 52(7): 1600-1605. doi: 10.7498/aps.52.1600
    [8] 许 进, 张 强, 高 琳, 王 超, 袁 涛. 具有时滞的一阶细胞神经网络动态行为研究. 物理学报, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
    [9] 刘彬, 张业宽, 刘爽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [10] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究. 物理学报, 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [11] 吴然超. 时滞离散神经网络的同步控制. 物理学报, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [12] 赵艳影, 杨如铭. 利用时滞反馈控制自参数振动系统饱和控制减振频带. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [13] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [14] 胡文, 赵广浩, 张弓, 张景乔, 刘贤龙. 时标正弦动力学方程稳定性与分岔分析. 物理学报, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [15] 马西奎, 杨 梅, 邹建龙, 王玲桃. 一种时延范德波尔电磁系统中的复杂行为(Ⅰ)——分岔与混沌现象. 物理学报, 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [16] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [17] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步. 物理学报, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [18] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究. 物理学报, 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [19] 王洪坡, 李 杰. 一类非自治位置时滞反馈控制系统的亚谐共振响应. 物理学报, 2007, 56(5): 2504-2516. doi: 10.7498/aps.56.2504
    [20] 莫嘉琪, 林万涛, 王 辉. 厄尔尼诺-南方涛动时滞海-气振子耦合模型. 物理学报, 2006, 55(7): 3229-3232. doi: 10.7498/aps.55.3229
  • 引用本文:
    Citation:
计量
  • 文章访问数:  196
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-08
  • 修回日期:  2018-11-12

兴奋性作用诱发神经簇放电个数不增反降的分岔机制

  • 同济大学航空航天与力学学院, 上海 200092
    基金项目: 

    国家自然科学基金(批准号:11872276,11572225,11372224)资助的课题.

摘要: 非线性动力学在识别神经放电的复杂现象、机制和功能方面发挥了重要作用.不同于传统观念,本文提出了兴奋性作用可以降低而不是增加簇内放电个数的新观点.在簇放电模式休止期的适合相位施加强度合适的脉冲或自突触电流,能诱发簇内放电个数降低;电流的施加相位越早,所需的强度阈值越大,簇内放电个数越少.进一步,利用快慢变量分离获得的簇放电的动力学性质进行了理论解释.簇放电模式表现出低电位的休止期和高电位的放电的交替,存在于快子系统的鞍结分岔点和同宿轨分岔点之间;放电起始于鞍结分岔、结束于同宿轨分岔;越靠近同宿轨分岔从休止期跨越到放电所需的电流强度越大.因此,电流在休止期上的作用相位越早,就越靠近同宿轨分岔,因而从休止期跨越到放电需要的电流强度阈值越大,放电起始相位到同宿轨分岔之间的区间变小导致放电个数变少.研究结果丰富了非线性现象及机制,对兴奋性作用提出了新看法,给出了调控簇放电模式的新途径.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回