Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorus oxides in heavily doped polysilicon films

Wang Yi-Lin Lan Zi-Xuan Du Hui-Wei Zhao Lei Ma Zhong-Quan

Citation:

Phosphorus oxides in heavily doped polysilicon films

Wang Yi-Lin, Lan Zi-Xuan, Du Hui-Wei, Zhao Lei, Ma Zhong-Quan
PDF
HTML
Get Citation
  • In tunneling oxide passivation contact (n-TOPCon) photovoltaic devices, poly-Si (n+) films with high-concentration phosphorus doping are the key materials for electron selective passivation. Its optical and electronic properties strongly depend on the chemical configuration and physical phase, and also on high temperature annealing and structural relaxation in the recrystallization process. The poly-Si (n+) films grown on SiOx/n-Si substrates by low pressure chemical vapor deposition technology are investigated, while the microstructure of the film is studied by using X-ray photoelectron spectroscopy with depth etching, high-resolution transmission electron microscopy and X-ray diffraction analysis. It is found that the binding energy values of the two fitted peaks (O2 and O3) of O 1s state of the thin film are situated at 532.1 and 533.7 eV, corresponding to the bonding of O—Si and O—P, respectively. The binding energy values of the two fitted peaks (P2 and P3) of P 2p state are located at 132.4 and 135.1 eV, corresponding to O—P* bonding with the same origin. Electronic microscopy and light diffraction analyses show that the polycrystalline silicon film has the characteristic of (111) preferential orientation, and the space of crystal plane is 0.313 nm, for which the average grain size is in a range of about 43.6–55.0 nm. However, the mechanical deformation and grain boundaries are generated in the annealing process at 920 ℃ along (111) crystal cluster, resulting in the localized monocrystalline state within large grains. The comprehensive analyses of thermodynamic function parameters of formation enthalpy, reaction entropy, heat capacity, formation energy and Gibbs free energy and energy minimum principle analysis indicate that there exist conditions for forming Si—O and P—O bonds in the polysilicon film, and thus the bonding state of silicon and phosphorus oxides are formed.
      Corresponding author: Ma Zhong-Quan, zqma@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874070, 61674099, 61274067) and the R&D Foundation of the SHU-SOENs PV Joint Laboratory, China (Grant No. SS-E0700601).
    [1]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [2]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 123Google Scholar

    [3]

    Shen W, Zhao Y, Liu F 2022 Front. Energy 16 40Google Scholar

    [4]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [5]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [6]

    Yan D, Cuevas A, Michel J I, Zhang C, Wan Y, Zhang X, Bullock J 2021 Joule 5 811Google Scholar

    [7]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energy Mater. Sol. Cells 206 110258Google Scholar

    [8]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [9]

    Chandra M N, Biswas S, Acharya S, Panda T, Sadhukhan S, Sharma J R, Nandi A, Bose S, Kole A, Das G, Maity S, Chaudhuri P, Saha H 2020 Mater. Sci. Semicond. Process. 119 105163Google Scholar

    [10]

    Padhamnath P, Khanna A, Nandakumar N, Nampalli N, Shanmugam V, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 207 110358Google Scholar

    [11]

    Gao T, Yang Q, Guo X Q, Huang Y Q, Zhang Z, Wang Z X, Liao M D, Shou C H, Zeng Y H, Yan B J, Hou G F, Zhang X D, Zhao Y, Ye J C 2019 Sol. Energy Mater. Sol. Cells 200 109926Google Scholar

    [12]

    Kim D R, Lee C H, Weisse J M, Cho I S, Zheng X 2012 Nano Lett. 12 6485Google Scholar

    [13]

    Polzin J I, Hammann B, Niewelt T, Kwapil W, Hermle M, Feldmann F 2021 Sol. Energy Mater. Sol. Cells 230 111267Google Scholar

    [14]

    Padhamnath P, Khanna A, Balaji N, Shanmugam V, Nandakumar N, Wang D, Sun Q, Huang M, Huang S, Fan B, Ding B, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 218 110751Google Scholar

    [15]

    Susa M, Kawagishi K, Tanaka N, Nagata K 1997 J. Electrochem. Soc. 144 2552Google Scholar

    [16]

    Hide I, Matsuyama T, Suzuki M, Yamashita H, Suzuki T, Moritani T, Maeda Y 1990 J. Cryst. Growth 99 1339Google Scholar

    [17]

    Fırat M, Payo M R, Duerinckx F, Luchies J-M, Lenes M, Poortmans J 2019 AIP Conf. Proc. 2147 040004Google Scholar

    [18]

    Kern W 1970 RCA Rev. 31 51Google Scholar

    [19]

    Lozac'h M, Nunomura S, Matsubara K 2020 Sol. Energy Mater. Sol. Cells 207 110357Google Scholar

    [20]

    Han L, Chen Z 2013 ECS J. Solid State Sci. Technol. 2 N228Google Scholar

    [21]

    Ying W B, Mizokawa Y, Kamiura Y, Kawamoto K, Yang W Y 2001 Appl. Surf. Sci. 181 1Google Scholar

    [22]

    Sherwood P M A 2002 Surf. Sci. Spectra 9 62Google Scholar

    [23]

    Moulder J F, Chastain J, King R C 1992 Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Waltham: Perkin-Elmer Corporation) pp230–232

    [24]

    Chen K, Bothwell A, Guthrey H, Hartenstein M B, Polzin J I, Feldmann F, Nemeth W, Theingi S, Page M, Young D L, Stradins P, Agarwal S 2022 Sol. Energy Mater. Sol. Cells 236 111510Google Scholar

    [25]

    Monshi A, Foroughi M R, Monshi M R 2012 World J. Nano Sci. Eng. 2 154Google Scholar

    [26]

    Kale A S, Nemeth W, Guthrey H, Nanayakkara S U, LaSalvia V, Theingi S, Findley D, Page M, Al-Jassim M, Young D L, Stradins P, Agarwal S 2019 ACS Appl. Mater. Interfaces 11 42021Google Scholar

    [27]

    De Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Krishna Ande C, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2 150009Google Scholar

    [28]

    De Jong M, Chen W, Geerlings H, Asta M, Persson K A 2015 Sci. Data 2 150053Google Scholar

    [29]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [30]

    Perry D L, Phillips S L 1998 Handbook of inorganic compounds (Boca Raton: CRC Press)

    [31]

    Jung I H, Hudon P 2012 J. Am. Ceram. Soc. 95 3665Google Scholar

    [32]

    Rahman M, Hudon P, Jung I H 2013 Metall. Mater. Trans. B 44 837Google Scholar

    [33]

    Boigelot R, Graz Y, Bourgel C, Defoort F, Poirier J 2015 Ceram. Int. 41 2353Google Scholar

  • 图 1  n-TOPCon 器件结构示意图

    Figure 1.  Schematic diagram of n-TOPCon device.

    图 2  P 2p, Si 2p, O 1s态的XPS能谱图(描述了能谱在薄膜不同深度处的强度变化, 对应刻蚀时间为a: 0 s, b: 500 s, c: 1500 s, d: 2000 s, e: 2600 s) (a) P 2p态的XPS能谱和Si 2p态的等离激元损失峰; (b) Si 2p 态的XPS能谱; (c) O 1s 态的XPS能谱. 为了方便显示各元素结合能的变化, 对(a)—(c)图谱曲线的强度均做出了调整

    Figure 2.  The XPS spectra of P 2p, Si 2p and O 1s, which describes the changes of density with different depths at etching time of a 0 s, b 500 s, c 1500 s, d 2000 s, and e 2600 s. (a) XPS spectra of P 2p states and Si 2p for plasmon loss peak; (b) XPS spectra of Si 2p states; (c) XPS spectra of O 1s states. In order to display the change of binding energy of each elements intuitively, the intensity of spectrum curves in panel (a)–(c) are adjusted.

    图 3  刻蚀时间为2000 s时P 2p态、Si 2p、O 1s态的分峰拟合图谱 (a) P 2p态; (b) Si 2p态; (c) O 1s态

    Figure 3.  Fitting peak spectra of P 2p, Si 2p, O 1s state of etching time of 2000 s: (a) P 2p state; (b) Si 2p state; (c) O 1s state.

    图 4  n-TOPCon器件中poly-Si (n+)薄膜的XRD表征, 其中a, b分别为同一样品的两次测量结果

    Figure 4.  Characterization of poly-Si (n+) film in n-TOPCon device, and a, b are the two measurements for the same sample, respectively.

    图 5  (a) n-TOPCon器件中poly-Si (n+)薄膜的不同晶面方向与力学形变; (b) poly-Si (n+)/SiOx/n-Si界面与隧穿氧化硅

    Figure 5.  (a) Characterization of different crystal face orientations and mechanical strains in poly-Si (n+) film of n-TOPCon device; (b) poly-Si (n+)/SiOx/n-Si interface and tunneling silicon oxide.

    表 1  298 K(室温)时, SiP, SiO, SiO2 和P2O5的热力学函数参数(生成焓、热容、反应熵与形成能)

    Table 1.  Thermodynamic function parameters (formation enthalpy, heat capacity, reaction entropy and formation energy) of SiP, SiO, SiO2 and P2O5 at 298 K (RT).

    $ {H}_{0}^{298} $/
    eV
    ${C}_{\mathrm{P} }$/
    (J·mol–1·K–1)
    ${ {S} }_{0}^{298}/$
    (J·mol–1·K–1)
    形成能/
    eV
    SiP–0.64–5.6533.35–0.28
    SiO–8.19–2.05211.18–4.11
    SiO2–9.44–10.0843.63–9.81
    P2O5–31.20–15.6117.07–15.60
    DownLoad: CSV

    表 2  1193 K (920 ℃)时, SiP, SiO, SiO2 和 P2O5的热力学函数参数(生成焓、热容、反应熵与形成能)

    Table 2.  Thermodynamic function parameters (formation enthalpy, heat capacity, reaction entropy and Gibbs free energy) of SiP, SiO, SiO2 and P2O5 at 1193 K.

    $ {H}_{0}^{1193} $/
    eV
    $ {C}_{\mathrm{P}} $/
    (J·mol–1·K–1)
    $ {S}_{0}^{1193} $/
    (J·mol–1·K–1)
    $ {G}_{0}^{1193} $
    /
    eV
    SiP–53.05–5.6525.51–53.37
    SiO–27.21–2.05208.34–29.79
    SiO2–102.95–10.0829.65–103.31
    P2O5–176.01–15.61–4.58–175.95
    DownLoad: CSV
  • [1]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [2]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 123Google Scholar

    [3]

    Shen W, Zhao Y, Liu F 2022 Front. Energy 16 40Google Scholar

    [4]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [5]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [6]

    Yan D, Cuevas A, Michel J I, Zhang C, Wan Y, Zhang X, Bullock J 2021 Joule 5 811Google Scholar

    [7]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energy Mater. Sol. Cells 206 110258Google Scholar

    [8]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [9]

    Chandra M N, Biswas S, Acharya S, Panda T, Sadhukhan S, Sharma J R, Nandi A, Bose S, Kole A, Das G, Maity S, Chaudhuri P, Saha H 2020 Mater. Sci. Semicond. Process. 119 105163Google Scholar

    [10]

    Padhamnath P, Khanna A, Nandakumar N, Nampalli N, Shanmugam V, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 207 110358Google Scholar

    [11]

    Gao T, Yang Q, Guo X Q, Huang Y Q, Zhang Z, Wang Z X, Liao M D, Shou C H, Zeng Y H, Yan B J, Hou G F, Zhang X D, Zhao Y, Ye J C 2019 Sol. Energy Mater. Sol. Cells 200 109926Google Scholar

    [12]

    Kim D R, Lee C H, Weisse J M, Cho I S, Zheng X 2012 Nano Lett. 12 6485Google Scholar

    [13]

    Polzin J I, Hammann B, Niewelt T, Kwapil W, Hermle M, Feldmann F 2021 Sol. Energy Mater. Sol. Cells 230 111267Google Scholar

    [14]

    Padhamnath P, Khanna A, Balaji N, Shanmugam V, Nandakumar N, Wang D, Sun Q, Huang M, Huang S, Fan B, Ding B, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 218 110751Google Scholar

    [15]

    Susa M, Kawagishi K, Tanaka N, Nagata K 1997 J. Electrochem. Soc. 144 2552Google Scholar

    [16]

    Hide I, Matsuyama T, Suzuki M, Yamashita H, Suzuki T, Moritani T, Maeda Y 1990 J. Cryst. Growth 99 1339Google Scholar

    [17]

    Fırat M, Payo M R, Duerinckx F, Luchies J-M, Lenes M, Poortmans J 2019 AIP Conf. Proc. 2147 040004Google Scholar

    [18]

    Kern W 1970 RCA Rev. 31 51Google Scholar

    [19]

    Lozac'h M, Nunomura S, Matsubara K 2020 Sol. Energy Mater. Sol. Cells 207 110357Google Scholar

    [20]

    Han L, Chen Z 2013 ECS J. Solid State Sci. Technol. 2 N228Google Scholar

    [21]

    Ying W B, Mizokawa Y, Kamiura Y, Kawamoto K, Yang W Y 2001 Appl. Surf. Sci. 181 1Google Scholar

    [22]

    Sherwood P M A 2002 Surf. Sci. Spectra 9 62Google Scholar

    [23]

    Moulder J F, Chastain J, King R C 1992 Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Waltham: Perkin-Elmer Corporation) pp230–232

    [24]

    Chen K, Bothwell A, Guthrey H, Hartenstein M B, Polzin J I, Feldmann F, Nemeth W, Theingi S, Page M, Young D L, Stradins P, Agarwal S 2022 Sol. Energy Mater. Sol. Cells 236 111510Google Scholar

    [25]

    Monshi A, Foroughi M R, Monshi M R 2012 World J. Nano Sci. Eng. 2 154Google Scholar

    [26]

    Kale A S, Nemeth W, Guthrey H, Nanayakkara S U, LaSalvia V, Theingi S, Findley D, Page M, Al-Jassim M, Young D L, Stradins P, Agarwal S 2019 ACS Appl. Mater. Interfaces 11 42021Google Scholar

    [27]

    De Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Krishna Ande C, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2 150009Google Scholar

    [28]

    De Jong M, Chen W, Geerlings H, Asta M, Persson K A 2015 Sci. Data 2 150053Google Scholar

    [29]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [30]

    Perry D L, Phillips S L 1998 Handbook of inorganic compounds (Boca Raton: CRC Press)

    [31]

    Jung I H, Hudon P 2012 J. Am. Ceram. Soc. 95 3665Google Scholar

    [32]

    Rahman M, Hudon P, Jung I H 2013 Metall. Mater. Trans. B 44 837Google Scholar

    [33]

    Boigelot R, Graz Y, Bourgel C, Defoort F, Poirier J 2015 Ceram. Int. 41 2353Google Scholar

  • [1] Li Jun-Lin, Li Rui-Bin, Ding Li-Li, Chen Wei, Liu Yan. TCAD simulation analysis of vertical parasitic effect induced by pulsed γ- ray in NMOS from 180 nm to 40 nm technology nodes. Acta Physica Sinica, 2022, 71(4): 046104. doi: 10.7498/aps.71.20211691
    [2] Xu Hua, Liu Jing-Dong, Cai Wei, Li Min, Xu Miao, Tao Hong, Zou Jian-Hua, Peng Jun-Biao. Effect of N 2O treatment on performance of back channel etched metal oxide thin film transistors. Acta Physica Sinica, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [3] Analysis of vertical parasitic effect induced by pulsed γ- ray through TCAD Simulation in NMOS from 180nm to 40nm technology node. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211691
    [4] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [5] Tang Gui-De, Li Zhuang-Zhi, Ma Li, Wu Guang-Heng, Hu Feng-Xia. Opportunity and challenge for study of valence electron structure in typical magnetic materials. Acta Physica Sinica, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [6] Zhang Ning, Xu Kai-Kai, Chen Yan-Xu, Zhu Kun-Feng, Zhao Jian-Ming, Yu Qi. Application prospect of metal-oxide-semiconductor silicon light emitting devices in integrated circuits. Acta Physica Sinica, 2019, 68(16): 167803. doi: 10.7498/aps.68.20191004
    [7] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [8] Guo Jing, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun. Pulse duration effect on photoelectron spectrum of atom irradiated by strong high frequency laser. Acta Physica Sinica, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [9] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong, Yin Shu-Juan, Zhou Chun-Yu. A model of capacitance characteristic for uniaxially strained Si N-metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [10] Cui Xin, Li Su-Yu, Guo Fu-Ming, Tian Yuan-Ye, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. Photon and photoelectron emission of the atom under the action of high-frequency laser pulse. Acta Physica Sinica, 2015, 64(4): 043201. doi: 10.7498/aps.64.043201
    [11] Xin Yan-Hui, Liu Hong-Xia, Wang Shu-Long, Fan Xiao-Jiao. Two-dimensional analytical models for the symmetrical triple-material double-gate strained Si MOSFETs. Acta Physica Sinica, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [12] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Threshold voltage analytical model of fully depleted strained Si single Halo silicon-on-insulator metal-oxide semiconductor field effect transistor. Acta Physica Sinica, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [13] Zhu Jian-Yun, Liu Lu, Li Yu-Qiang, Xu Jing-Ping. Effect of annealing atmosphere on characteristics of MONOS with LaTiON or HfLaON as charge storage layer. Acta Physica Sinica, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [14] Cao Lei, Liu Hong-Xia, Wang Guan-Yu. Study of modeling for hetero-materiel gate fully depleted SSDOI MOSFET. Acta Physica Sinica, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [15] Qu Jiang-Tao, Wang Xiao-Yan, Zhang He-Ming, Wang Guan-Yu, Song Jian-Jun, Qin Shan-Shan. Drain-induced barrier-lowering effects on threshold voltage in short-channel strained Si metal-oxide semiconductor field transistor. Acta Physica Sinica, 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [16] Liu Hong-Xia, Yin Xiang-Kun, Liu Bing-Jie, Hao Yue. Threshold voltage analytic model for strained SiGe-on-insulator p-channel metal-oxide-semiconductor-field-effect-transistor. Acta Physica Sinica, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [17] Liu Zhao-Jun, Meng Zhi-Guo, Zhao Sun-Yun, Kwok Hoi Sing, Wu Chun-Ya, Xiong Shao-Zhen. Crystallized poly-silicon thin film laterally induced by the Ni/Si oxide source. Acta Physica Sinica, 2010, 59(4): 2775-2782. doi: 10.7498/aps.59.2775
    [18] Liu Xiu-Xi, Wang Gong-Tang. Fabrication of high voltage thyristor based on silicon organic compounds and metal oxides type isolation protective material. Acta Physica Sinica, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [19] Hu Yi. Photorefractive gain property and optimization of dynamic holographic gratings in arbitrarily cut sillenite crystal. Acta Physica Sinica, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [20] JI ZHEN-GUO, CHEN LI-DENG, MA XIANG-YANG, YAO HONG-NIAN, QUE DUAN-LIN. . Acta Physica Sinica, 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
Metrics
  • Abstract views:  3888
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2022
  • Accepted Date:  23 May 2022
  • Available Online:  08 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回