Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hole scattering mechanism in tetragonal strained Si

Song Jian-Jun Zhang He-Ming Hu Hui-Yong Wang Xiao-Yan Wang Guan-Yu

Hole scattering mechanism in tetragonal strained Si

Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Wang Xiao-Yan, Wang Guan-Yu
PDF
Get Citation
  • Based on Fermi's golden rule and the theory of Boltzmann collision term approximation, hole scattering mechanism in strained Si/(001)Si1-xGex, namely, tetragonal strained Si is studied, including ionized impurity, acoustic phonon, non-polar optical phonon and total scattering rates. It is found that the total scattering rate of hole in strained Si/(001)Si1-xGex decreases obviously with the increase of stress when Ge fraction (x) is less than 0.2 and the values continue to show a constant tendency. The total hole scattering rate of strained Si/(001)Si1-xGex decreases about 66% at most in comparison with one of unstrained Si. The hole mobility enhancement in strained Si material is due to the decrease of hole scattering rate. The result can provide valuable references for the research of hole mobility of strained Si materials and the design of PMOS devices.
    • Funds: Project supported by the Fundamental Rescarch Funds for the Central Universities, China (Grant Nos. 72105499, 72104089) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2010JQ8008).
    [1]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 ActaPhys. Sin. 57 5918 (in Chinese) [宋建军,张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]

    [2]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dian X Y 2009 ActaPhys. Sin. 58 4958 (in Chinese) [宋建军,张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 物理学报 58 4958]

    [3]

    Liu H H, Duan X F, Xu Q X 2009 Micron 40 274

    [4]

    Guillaume T, Mouis M 2006 Solid-State Electronics 50 701

    [5]

    Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics52 1437

    [6]

    Song J J, Zhang H M, Hu H Y, Fu Q 2009 Science in China 52 546

    [7]

    Demaring N V, Gruetzmacher D A 2008 International Conferenceon Advanced Semiconductor Devices and Microsystems, ASDAM91-94

    [8]

    Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev.53 1840

    [9]

    Chen X B, Yan J M, Fang Z 1979 Introduction to Solid StatePhysics (Beijing: Defense Industry Press) p190 (in Chinese ) [陈星弼, 鄢俊明, 方政 1979 固体物理导论 (北京:国防工业出版社)190]

    [10]

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing:Defense Industry Press) p367 (in Chinese) [刘恩科,朱秉升, 罗晋生 1994 半导体物理学 (北京:国防工业出版社) 367]

    [11]

    Jacoboni C, Reggiani L 1983 Rev. Mod. Phys. 55 648

  • [1]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 ActaPhys. Sin. 57 5918 (in Chinese) [宋建军,张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]

    [2]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dian X Y 2009 ActaPhys. Sin. 58 4958 (in Chinese) [宋建军,张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 物理学报 58 4958]

    [3]

    Liu H H, Duan X F, Xu Q X 2009 Micron 40 274

    [4]

    Guillaume T, Mouis M 2006 Solid-State Electronics 50 701

    [5]

    Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics52 1437

    [6]

    Song J J, Zhang H M, Hu H Y, Fu Q 2009 Science in China 52 546

    [7]

    Demaring N V, Gruetzmacher D A 2008 International Conferenceon Advanced Semiconductor Devices and Microsystems, ASDAM91-94

    [8]

    Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev.53 1840

    [9]

    Chen X B, Yan J M, Fang Z 1979 Introduction to Solid StatePhysics (Beijing: Defense Industry Press) p190 (in Chinese ) [陈星弼, 鄢俊明, 方政 1979 固体物理导论 (北京:国防工业出版社)190]

    [10]

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing:Defense Industry Press) p367 (in Chinese) [刘恩科,朱秉升, 罗晋生 1994 半导体物理学 (北京:国防工业出版社) 367]

    [11]

    Jacoboni C, Reggiani L 1983 Rev. Mod. Phys. 55 648

  • [1] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [2] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [3] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [4] G.Li, S.J.Chua, LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
    [5] Wang Guan-Yu, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Ma Jian-Li, Wang Xiao-Yan. Analytical dispersion relation model for conduction band of uniaxial strained Si. Acta Physica Sinica, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [6] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [7] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [8] Li Jin, Liu Hong-Xia, Li Bin, Cao Lei, Yuan Bo. Threshold voltage analytical model for strained Si SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [9] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Two-dimensional analytical model of dual material gate strained Si SOI MOSFET with asymmetric Halo. Acta Physica Sinica, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [10] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Dispersion relation model of valence band in strained Si. Acta Physica Sinica, 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
  • Citation:
Metrics
  • Abstract views:  1464
  • PDF Downloads:  428
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2011
  • Accepted Date:  13 July 2011
  • Published Online:  05 March 2012

Hole scattering mechanism in tetragonal strained Si

  • 1. Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Fund Project:  Project supported by the Fundamental Rescarch Funds for the Central Universities, China (Grant Nos. 72105499, 72104089) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2010JQ8008).

Abstract: Based on Fermi's golden rule and the theory of Boltzmann collision term approximation, hole scattering mechanism in strained Si/(001)Si1-xGex, namely, tetragonal strained Si is studied, including ionized impurity, acoustic phonon, non-polar optical phonon and total scattering rates. It is found that the total scattering rate of hole in strained Si/(001)Si1-xGex decreases obviously with the increase of stress when Ge fraction (x) is less than 0.2 and the values continue to show a constant tendency. The total hole scattering rate of strained Si/(001)Si1-xGex decreases about 66% at most in comparison with one of unstrained Si. The hole mobility enhancement in strained Si material is due to the decrease of hole scattering rate. The result can provide valuable references for the research of hole mobility of strained Si materials and the design of PMOS devices.

Reference (11)

Catalog

    /

    返回文章
    返回