搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生

周沛 张仁恒 朱尖 李念强

引用本文:
Citation:

基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生

周沛, 张仁恒, 朱尖, 李念强

High-performance linear frequency-modulated signal generation based on optically injected semiconductor laser with dual-loop optoelectronic feedback

Zhou Pei, Zhang Ren-Heng, Zhu Jian, Li Nian-Qiang
PDF
HTML
导出引用
  • 提出了一种基于双路光电反馈下, 光注入半导体激光器的高性能微波线性调频信号产生方案, 并进行了实验验证. 在合适的注入参数下, 光注入半导体激光器可工作于单周期振荡态, 生成频率由注入强度和失谐频率决定的可调谐微波信号. 通过加载波形为类三角波的电压信号控制注入强度, 光注入半导体激光器可生成宽带微波线性调频信号. 进一步通过引入延时匹配的双路光电反馈环路, 来提升光注入半导体激光器生成线性调频信号的质量: 分别基于傅里叶域模式锁定原理和自注入锁定技术, 引入短环光电反馈和长环光电反馈, 以同时实现线性调频信号的梳齿信噪比提升和线宽窄化. 在验证实验中, 本方案产生了带宽为8 GHz (18—26 GHz)的线性调频信号, 其梳齿信噪比达到40 dB, 梳齿线宽为1 kHz. 实验结果证明了本方案能够生成同时具有大带宽、高梳齿信噪比、窄线宽且相位关系稳定的高性能微波线性调频信号.
    Linear frequency-modulated (LFM) waveforms have numerous applications in high-resolution radar detection, high-speed wireless communication, and high precision measurement. The generation of LFM microwave signals based on conventional electronic technologies is limited in their center frequency and bandwidth, which are usually less than a few gigahertz. Fortunately, the inherently large bandwidth offered by photonic technology is very hopeful of breaking through the electronic bottleneck. A variety of photonics-based approaches to generating the LFM waveforms have been reported, including the frequency-to-time mapping method and the external modulation method. However, these solutions suffer poor tunability or expensive RF sources. In recent years, the LFM waveform generation based on optically injected semiconductor lasers (OISLs) has attracted increasing attention. By introducing a low-speed electrical signal to control the period-one (P1) dynamics of an OISL, the LFM waveforms with a large bandwidth are generated. Nonetheless, the generated microwave signal has poor spectral purity, which restricts its many practical applications.In this work, a high-performance microwave LFM waveform generation scheme based on an OISL with dual-loop optoelectronic feedback is proposed and demonstrated experimentally. In this scheme, the optical injection strength of an OISL is controlled first by a triangular-like voltage signal to generate LFM waveforms with a large bandwidth. Then, the quality of the generated LFM signal is comprehensively improved by introducing a delay-matched dual-loop optoelectronic feedback structure. Based on the Fourier domain mode locking principle (FDML) and the self-injection locking technique, both a short-delay optoelectronic feedback loop and a long-delay optoelectronic feedback loop are introduced to simultaneously improve the spectral purity and phase stability of the generated LFM signals. In the proof-of-concept experiment, by analyzing the spectral quality and phase deviation of the generated LFM signal, a comb contrast of 40 dB, a comb linewidth of 1 kHz, and a phase deviation ∆φ of less than π/3 are simultaneously obtained. In addition, the parameters such as bandwidth and center frequency of the generated LFM signal generated can be flexibly tuned, and an LFM signal with a large bandwidth up to 8 GHz (18–26 GHz) is generated in the experiment. The proposed scheme features a simple and compact structure, high spectral quality and flexible tuning, thus may find applications in broadband radar and high-speed communication systems.
      通信作者: 李念强, nli@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62001317, 62004135, 62171305)、江苏省自然科学基金(批准号: BK20200855)和江苏省高等学校自然科学研究项目(批准号: 20KJB510011)资助的课题.
      Corresponding author: Li Nian-Qiang, nli@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001317, 62004135, 62171305), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200855), and the Natural Science Research Project of Jiangsu Higher Education Institutions of China (Grant No. 20KJB510011).
    [1]

    潘时龙, 张亚梅 2017 科技导报 35 36

    Pan S L, Zhang Y M 2017 Sci. Technol. Rev. 35 36

    [2]

    曹继明, 崇毓华, 梅理, 朱宇鹏, 段宗明 2021 电子科技 34 36

    Cao J M, Chong Y H, Mei L, Zhu Y P, Duan Z M 2021 Electron. Sci. Technol. 34 36

    [3]

    李刚 2019 电子技术与软件工程 15 60

    Li G 2019 Electron. Technol. Software Eng. 15 60

    [4]

    McKinney J D 2014 Nature 507 310Google Scholar

    [5]

    Pan S L, Zhang Y M 2020 J. Lightwave Technol. 38 5450Google Scholar

    [6]

    Zhang F Z, Guo Q S, Pan S L 2017 Sci. Rep. 7 13848Google Scholar

    [7]

    王贝贝, 王志鹏 2021 电视技术 45 90

    Wang B B, Wang Z P 2021 Video Eng. 45 90

    [8]

    Zhang H, Zou W W, Chen J P 2015 Opt. Lett. 40 1085Google Scholar

    [9]

    Sun Y, Wang D Y, Deng C Y, Lu M J, Huang L, Hu G H, Yun B F, Cui Y P 2022 Opt. Lett. 47 1077Google Scholar

    [10]

    Li R M, Li W Z, Ding M L, Wen Z L, Li Y L, Zhou L J, Yu S S, Xing T H, Gao B W, Luan Y C, Zhu Y T, Guo P, Tian Y, Liang X D 2017 Opt. Express 25 14334Google Scholar

    [11]

    Zhu D, Yao J P 2015 IEEE Photonics Technol. Lett. 27 1410Google Scholar

    [12]

    Zhang Y M, Ye X W, Guo Q S, Zhang F Z, Pan S L 2017 J. Lightwave Technol. 35 1821Google Scholar

    [13]

    Li W Z, Yao J P 2014 J. Lightwave Technol. 32 3573Google Scholar

    [14]

    Zhou P, Li N Q, Pan S L 2022 Photonics 9 227Google Scholar

    [15]

    Zhou P, Zhang F Z, Guo Q S, Pan S L 2016 Opt. Express 24 18460Google Scholar

    [16]

    Usechak N G, Suelzer J S, Haefner J W 2017 IEEE Photonics Technol. Lett. 29 1132Google Scholar

    [17]

    Zhou P, Zhang R H, Li K X, Jiang Z D, Mu P H, Bao H L, Li N Q 2020 Opt. Express 28 32647Google Scholar

    [18]

    Tseng C H, Hung Y H, Hwang S K 2019 Opt. Lett. 44 3334Google Scholar

    [19]

    Zhou P, Chen H, Li N Q, Zhang R H, Pan S L 2020 Opt. Lett. 45 1342Google Scholar

    [20]

    Zhuang J P, Li X Z, Li S S, Chan S C 2016 Opt. Lett. 41 5764Google Scholar

    [21]

    Zhou P, Zhang F Z, Pan S L 2018 J. Lightwave Technol. 36 3726Google Scholar

    [22]

    Lin X D, Xia G Q, Shang Z, Deng T, Tang X, Fan L, Gao Z Y, Wu Z M 2019 Opt. Express. 27 1217Google Scholar

    [23]

    Chan S C, Hwang S K, Liu J M 2006 Opt. Lett. 31 2254

    [24]

    Hao T F, Cen Q Z, Dai Y T, Tang J, Li W, Yao J P, Zhu N H, Li M 2018 Nat. Commun. 9 1839Google Scholar

  • 图 1  实验装置示意图(ML, 主激光器; SL, 从激光器; Att, 光衰减器; PC, 偏振控制器; DMZM, 双驱动马赫-曾德尔调制器; S(t), 控制信号; CIR, 光环行器; OC, 光耦合器; SMF, 单模光纤; PD, 光电探测器; EC, 电耦合器)

    Fig. 1.  Schematic diagram of the experimental setup. ML, master laser; SL, slave laser; Att, optical attenuator; PC, polarization controller; DMZM, dual-drive Mach-Zehnder modulator; S(t), control signal; CIR, optical circulator; OC, optical coupler; SMF, single-mode fiber; PD, photodetector; EC, electrical coupler.

    图 2  单周期振荡态光谱图与频率调谐特性 (a) 单周期振荡态光谱图; (b) 单周期振荡频率fo随DMZM偏置电压的变化

    Fig. 2.  Optical spectra and frequency tuning curve of the P1 oscillation state: (a) Optical spectra of the P1 oscillation state; (b) the relationship between the microwave frequency fo and the bias voltage applied to DMZM.

    图 3  所产生线性调频信号的结果(控制信号S(t)(第一行); 时域波形(第二行); 瞬时频率(第三行)) (a) 无反馈情形; (b) 单反馈情形; (c) 双反馈情形

    Fig. 3.  Results of the generated LFM microwave signals (Control signals S(t) (the first row); temporal waveforms (the second row); instantaneous frequencies (the third row)): (a) Without feedback; (b) single-loop feedback; (c) dual-loop feedback.

    图 4  线性调频信号的频谱图(频谱图(第一行); 细节频谱图(第二、三行)) (a) 无反馈情形; (b) 单反馈情形, 延时τu = 1.14 μs; (c) 双反馈情形, 延时(τu, τd) = (1.14 μs, 25.08 μs)

    Fig. 4.  Electrical spectra of the generated LFM microwave signals (Electrical spectra (the first row); the zoomed-in views of the electrical spectra (the second and third row)): (a) Without feedback; (b) single-loop feedback with τu = 1.14 μs; (c) dual-loop feedback with (τu, τd) = (1.14 μs, 25.08 μs).

    图 5  线性调频信号的相位偏差图 (a) 无反馈情形; (b) 单反馈情形; (c) 双反馈情形; 插图为相位偏差细节

    Fig. 5.  Phase deviation of the generated LFM microwave signals: (a) Without feedback; (b) single-loop feedback; (c) dual-loop feedback. Insets: the zoomed-in views of the phase deviation.

    图 6  Ku波段线性调频信号产生结果 (a)控制信号S(t); (b) 时域波形; (c) 瞬时频率; (d) 频谱图; (e) 5 MHz频谱图; (f) 50 kHz频谱图

    Fig. 6.  Results of the Ku-band LFM microwave signal: (a) Control signal S(t); (b) temporal waveform; (c) instantaneous frequency; (d) electrical spectrum; (e) 5 MHz electrical spectrum; (f) 50 kHz electrical spectrum.

    图 7  K波段线性调频信号产生结果 (a)控制信号S(t); (b) 频谱图; (c) 5 MHz频谱图; (d) 50 kHz频谱图

    Fig. 7.  Results of the K-band LFM microwave signal: (a) Control signal S(t); (b) electrical spectrum; (c) 5 MHz electrical spectrum; (d) 50 kHz electrical spectrum.

  • [1]

    潘时龙, 张亚梅 2017 科技导报 35 36

    Pan S L, Zhang Y M 2017 Sci. Technol. Rev. 35 36

    [2]

    曹继明, 崇毓华, 梅理, 朱宇鹏, 段宗明 2021 电子科技 34 36

    Cao J M, Chong Y H, Mei L, Zhu Y P, Duan Z M 2021 Electron. Sci. Technol. 34 36

    [3]

    李刚 2019 电子技术与软件工程 15 60

    Li G 2019 Electron. Technol. Software Eng. 15 60

    [4]

    McKinney J D 2014 Nature 507 310Google Scholar

    [5]

    Pan S L, Zhang Y M 2020 J. Lightwave Technol. 38 5450Google Scholar

    [6]

    Zhang F Z, Guo Q S, Pan S L 2017 Sci. Rep. 7 13848Google Scholar

    [7]

    王贝贝, 王志鹏 2021 电视技术 45 90

    Wang B B, Wang Z P 2021 Video Eng. 45 90

    [8]

    Zhang H, Zou W W, Chen J P 2015 Opt. Lett. 40 1085Google Scholar

    [9]

    Sun Y, Wang D Y, Deng C Y, Lu M J, Huang L, Hu G H, Yun B F, Cui Y P 2022 Opt. Lett. 47 1077Google Scholar

    [10]

    Li R M, Li W Z, Ding M L, Wen Z L, Li Y L, Zhou L J, Yu S S, Xing T H, Gao B W, Luan Y C, Zhu Y T, Guo P, Tian Y, Liang X D 2017 Opt. Express 25 14334Google Scholar

    [11]

    Zhu D, Yao J P 2015 IEEE Photonics Technol. Lett. 27 1410Google Scholar

    [12]

    Zhang Y M, Ye X W, Guo Q S, Zhang F Z, Pan S L 2017 J. Lightwave Technol. 35 1821Google Scholar

    [13]

    Li W Z, Yao J P 2014 J. Lightwave Technol. 32 3573Google Scholar

    [14]

    Zhou P, Li N Q, Pan S L 2022 Photonics 9 227Google Scholar

    [15]

    Zhou P, Zhang F Z, Guo Q S, Pan S L 2016 Opt. Express 24 18460Google Scholar

    [16]

    Usechak N G, Suelzer J S, Haefner J W 2017 IEEE Photonics Technol. Lett. 29 1132Google Scholar

    [17]

    Zhou P, Zhang R H, Li K X, Jiang Z D, Mu P H, Bao H L, Li N Q 2020 Opt. Express 28 32647Google Scholar

    [18]

    Tseng C H, Hung Y H, Hwang S K 2019 Opt. Lett. 44 3334Google Scholar

    [19]

    Zhou P, Chen H, Li N Q, Zhang R H, Pan S L 2020 Opt. Lett. 45 1342Google Scholar

    [20]

    Zhuang J P, Li X Z, Li S S, Chan S C 2016 Opt. Lett. 41 5764Google Scholar

    [21]

    Zhou P, Zhang F Z, Pan S L 2018 J. Lightwave Technol. 36 3726Google Scholar

    [22]

    Lin X D, Xia G Q, Shang Z, Deng T, Tang X, Fan L, Gao Z Y, Wu Z M 2019 Opt. Express. 27 1217Google Scholar

    [23]

    Chan S C, Hwang S K, Liu J M 2006 Opt. Lett. 31 2254

    [24]

    Hao T F, Cen Q Z, Dai Y T, Tang J, Li W, Yao J P, Zhu N H, Li M 2018 Nat. Commun. 9 1839Google Scholar

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [3] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [4] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [5] 曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂. 光注入和光电反馈联合作用下垂直腔表面发射激光器的动力学特性研究. 物理学报, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [6] 胡汉平, 于志良, 刘凌锋. 光电反馈混沌系统脉冲同步特性研究. 物理学报, 2012, 61(19): 190504. doi: 10.7498/aps.61.190504
    [7] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [8] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [9] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [10] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [11] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [12] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [13] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [14] 樊利, 夏光琼, 吴正茂. 基于光电反馈的激光混沌并联同步系统研究. 物理学报, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [15] 刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂. 强光注入提高光反馈VCSELs混沌载波基频. 物理学报, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [16] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [18] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [19] 王云才, 赵跃鹏, 张明江, 安 义, 王纪龙. 外光注入半导体激光器实现时钟分频. 物理学报, 2007, 56(12): 6982-6988. doi: 10.7498/aps.56.6982
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  2593
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-07-21
  • 上网日期:  2022-10-20
  • 刊出日期:  2022-11-05

/

返回文章
返回