搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究

刘骐萱 王永平 刘文军 丁士进

引用本文:
Citation:

基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究

刘骐萱, 王永平, 刘文军, 丁士进

Conduction mechanisms of MIM capacitors with ZrO2/SiO2/ZrO2 stacked dielectrics and Ni electrodes

Liu Qi-Xuan, Wang Yong-Ping, Liu Wen-Jun, Ding Shi-Jin
PDF
导出引用
  • 研究了基于Ni电极和原子层淀积的ZrO2/SiO2/ZrO2对称叠层介质金属-绝缘体-金属(MIM)电容的电学性能. 当叠层介质的厚度固定在14 nm时,随着SiO2层厚度从0增加到2 nm,所得电容密度从13.1 fF/m2逐渐减小到9.3 fF/m2,耗散因子从0.025逐渐减小到0.02. 比较MIM电容的电流-电压(I-V)曲线,发现在高压下电流密度随着SiO2厚度的增加而减小,在低压下电流密度的变化不明显,还观察到电容在正、负偏压下表现出完全不同的导电特性,在正偏压下表现出不同的高、低场I-V特性,而在负偏压下则以单一的I-V特性为主导. 进一步对该电容在高、低场下以及电子顶部和底部注入时的导电机理进行了研究. 结果表明,当电子从底部注入时,在高场和低场下分别表现出普尔-法兰克(PF)发射和陷阱辅助隧穿(TAT)的导电机理;当电子从顶部注入时,在高、低场下均表现出TAT导电机理. 主要原因在于底电极Ni与ZrO2之间存在镍的氧化层(NiOx),且ZrO2介质层中含有深浅两种能级陷阱(分别为0.9和2.3 eV),当电子注入的模式和外电场不同时,不同能级的陷阱对电子的传导产生作用.
    The electrical characteristics of Ni electrode-based metal-insulator-metal (MIM) capacitors have been investigated with atomic layer deposited ZrO2/SiO2/ZrO2 symmetric stacked-dielectrics. When the thickness of the stacked-dielectrics is fixed at 14 nm, the resulted capacitance density decreases from 13.1 fF/m2 to 9.3 fF/m2, and the dissipation factor is reduced from 0.025 to 0.02. By comparison of current-voltage (I-V) curves of different MIM capacitors, it is found that the leakage current density in the high voltage region decreases gradually with the increasing thickness of SiO2, and it does not exhibit clear change in the low voltage region. Meanwhile, the capacitors show different conduction behaviors under positive and negative biases with increasing the thickness of SiO2 from 0 to 2 nm. Under the positive bias, different I-V characteristics are demonstrated at high and low electric fields, respectively. However, a single I-V characteristic is dominant under the negative bias. Further, the conduction mechanisms of the capacitors are investigated under the electron bottom and top injection modes, respectively. It is found that the Poole-Frenkel emission and the trap-assisted tunneling are dominant in the high and low field regions, respectively, for the electron bottom injection; however, the trap-assisted tunneling is dominant in the whole field region for the electron top injection. These are attributed to the formation of a thin NiOx interfacial layer between the Ni bottom-electrode and the ZrO2 dielectric layer, as well as the existence of both deep and shallow level traps (0.9 and 2.3 eV) in the ZrO2 dielectric. Therefore, the level trap plays a key role in the electron conduction in the MIM capacitor under different electron injection modes and different electric fields.
      通信作者: 丁士进, sjding@fudan.edu.cn
    • 基金项目: 国家02科技重大专项(批准号:2015ZX02102-003)资助的课题.
      Corresponding author: Ding Shi-Jin, sjding@fudan.edu.cn
    • Funds: Project supported by the National Key Technologies RD Program of China (Grant No. 2015ZX02102-003).
    [1]

    Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516

    [2]

    Mangla O, Gupta V 2016 J. Mater Sci. 27 12537

    [3]

    Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901

    [4]

    Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312

    [5]

    Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107

    [6]

    Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803

    [7]

    Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 物理学报 58 3433]

    [8]

    Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492

    [9]

    Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]

    [10]

    Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219

    [11]

    Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114

    [12]

    Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506

    [13]

    Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304

    [14]

    Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106

    [15]

    Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121

    [16]

    Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289

    [17]

    Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538

    [18]

    Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683

    [19]

    Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45

    [20]

    Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235

    [21]

    Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518

    [22]

    Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706

    [23]

    Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503

    [24]

    Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154

    [25]

    Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902

    [26]

    Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874

    [27]

    Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154

    [28]

    Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124

    [29]

    Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523

    [30]

    Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109

    [31]

    Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104

    [32]

    Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144

    [33]

    Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501

    [34]

    Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612

    [35]

    Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501

    [36]

    Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576

    [37]

    Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749

    [38]

    Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105

    [39]

    Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521

    [40]

    Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719

    [41]

    Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657

    [42]

    Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615

    [43]

    Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159

    [44]

    Peck M A, Langell M A 2012 Chem. Mater. 24 4483

    [45]

    Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156

  • [1]

    Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516

    [2]

    Mangla O, Gupta V 2016 J. Mater Sci. 27 12537

    [3]

    Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901

    [4]

    Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312

    [5]

    Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107

    [6]

    Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803

    [7]

    Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 物理学报 58 3433]

    [8]

    Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492

    [9]

    Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]

    [10]

    Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219

    [11]

    Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114

    [12]

    Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506

    [13]

    Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304

    [14]

    Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106

    [15]

    Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121

    [16]

    Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289

    [17]

    Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538

    [18]

    Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683

    [19]

    Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45

    [20]

    Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235

    [21]

    Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518

    [22]

    Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706

    [23]

    Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503

    [24]

    Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154

    [25]

    Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902

    [26]

    Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874

    [27]

    Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154

    [28]

    Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124

    [29]

    Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523

    [30]

    Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109

    [31]

    Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104

    [32]

    Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144

    [33]

    Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501

    [34]

    Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612

    [35]

    Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501

    [36]

    Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576

    [37]

    Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749

    [38]

    Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105

    [39]

    Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521

    [40]

    Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719

    [41]

    Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657

    [42]

    Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615

    [43]

    Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159

    [44]

    Peck M A, Langell M A 2012 Chem. Mater. 24 4483

    [45]

    Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156

计量
  • 文章访问数:  5147
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-16
  • 刊出日期:  2017-04-05

/

返回文章
返回