搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石英光纤γ辐照损伤及其对近红外导波特性的影响

姜辉 陈抱雪 傅长松 隋国荣 矶守

引用本文:
Citation:

石英光纤γ辐照损伤及其对近红外导波特性的影响

姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守

γ-irradiation damage of quartz fiber and its effects on near-infrared transmission characteristics

Jiang Hui, Chen Bao-Xue, Fu Chang-Song, Sui Guo-Rong, Mamoru Iso
PDF
导出引用
  • 围绕光纤陀螺的近红外工作波长,从回波损耗、偏振相关损耗、散射损耗、吸收损耗、模场分布以及导模传播常数等方面实验考察了总剂量为120 krad (1.2 kGy)的γ辐照对石英单模光纤导波特性的影响;用近红外光谱技术和受激喇曼散射实验估计了相应的隙内缺陷能级及其增量;用X衍射考察了介质密度变动;采用高灵敏度干涉回路观察到了γ辐照光纤的光热效应,测试数据表明紫外退火具有一定的修复作用,揭示了紫外退火作为一种主动加固方式用于抗γ辐照的可能性.
    Around the near-infrared wavelength at which optical fiber gyroscope works, the effects of 120 krad γ-irradiation on single-mode quartz fiber are studied experimentally from the following several aspects: return loss, polarization dependent loss, scattering loss, absorption loss, mode field distribution and guided-mode propagation constants. The gap defect energy level and its increment are estimated from near-infrared spectroscopy and stimulated raman scattering experiment. The medium density change is studied by x-ray diffraction. The photothermal effect of irradiated fiber with γ-ray is observed by a high sensitivity interference circuit. The test data show that the UV anneal has some repairing effect, revealing the possibility that UV annealing method can serve as a mannes of active reinforcement.
    • 基金项目: 国家自然科学基金(批准号:60677032)资助的课题
    [1]

    Friebele E J, Gingerich M E, Griscom D L 1993 Proceeding of SPIE, vol. 1791 , Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston, MA, USA, September 8—9, 1992 p177

    [2]

    Williams G M, Putnam M A, Friebele E J 1996 Proceeding of SPIE, vol. 2811 , Photonics for Space Environments IV, Denver, CO, USA, August 6—7, 1996 p32

    [3]

    Boucher R H, Woodward W F, Lomheim T S, Shima R M, Asman D J, Killian K M, LeGrand J, Goellner G J 1996 Opt. Eng. 35 955

    [4]

    Toh K, Shikama T, Nagata S, Tsuchiya B, Yamauchi M, Nishitani T 2006 Meas. Sci. Technol. 17 955

    [5]

    Brichard B, Borgermans P, Fernandez A, Lammens K, Decréton M 2001 IEEE Trans. NucI. Sci. 48 2069

    [6]

    llenschel H, Khn O, Schmid H U 1992 IEEE RADECS 91:First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte, France, September 9—12, 1991 p380

    [7]

    Szafraniec B, Sanders G A 1999 J.Lig. Tech. 17 579

    [8]

    Lu Y H, Zhong S X 2004 Optoelectronic Technology 24 68 (in Chinese)[陆永红、钟生新 2004 光电子技术 24 68]

    [9]

    llenschel H, Khn O, Schmidt H U 1996 IEEE Trans. NucI. Sci. 43 1050

    [10]

    Gao S J, Ouyang S X 2003 Acta Phys. Sin. 52 1292 (in Chinese)[高祀建、欧阳世翕 2003 物理学报 52 1292]

    [11]

    Jiang X W,Qiu J R,Zhu C S,Ouyang S X,Hirao K,Gan F X 2001 Acta Phys. Sin. 50 871 (in Chinese) [姜雄伟、邱建荣、朱从善、欧阳世翕、Hirao K、干福熹 2001 物理学报 50 871]

    [12]

    Xiao Z Y, Luo W Y 2007 Acta Phys. Sin. 56 2731 (in Chinese)[肖中银、罗文芸、王廷云 2007 物理学报 56 2731]

    [13]

    Weeks R A 1956 J. Appl. Phys. 27 1376

    [14]

    Nagasawa H, Hoshi Y, Ohki Y 1987 Jpn. J. Appl. Phys. 26 554

    [15]

    Imai H, Arai K 1988 Phys. Rev. B 38 12772

    [16]

    Nishikawa H, Nakamura R, Tohmon R 1990 Phys. Rev. B 41 7828

    [17]

    Rich T C, Pinnow D A 1972 Appl.Phys.Lett. 20 264

    [18]

    Han Y L, Xiao W, Yi X S, Zhang Y C 2008 Infrared and Laser Engineering 37 128 (in Chinese)[韩艳玲、肖 文、伊小素、张运春 2008 红外与激光工程 37 128]

    [19]

    Gan F X 2002 Infrared and Laser Engineering 21 64 (in Chinese)[干福熹 2002 红外与激光工程 21 64]

    [20]

    He W, Li J Z, Mei J C 2005 Journal of Inorganic Materials 20 210 (in Chinese) [何 伟、李剑芝、梅家纯 2005 无机材料学报 20 210]

  • [1]

    Friebele E J, Gingerich M E, Griscom D L 1993 Proceeding of SPIE, vol. 1791 , Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston, MA, USA, September 8—9, 1992 p177

    [2]

    Williams G M, Putnam M A, Friebele E J 1996 Proceeding of SPIE, vol. 2811 , Photonics for Space Environments IV, Denver, CO, USA, August 6—7, 1996 p32

    [3]

    Boucher R H, Woodward W F, Lomheim T S, Shima R M, Asman D J, Killian K M, LeGrand J, Goellner G J 1996 Opt. Eng. 35 955

    [4]

    Toh K, Shikama T, Nagata S, Tsuchiya B, Yamauchi M, Nishitani T 2006 Meas. Sci. Technol. 17 955

    [5]

    Brichard B, Borgermans P, Fernandez A, Lammens K, Decréton M 2001 IEEE Trans. NucI. Sci. 48 2069

    [6]

    llenschel H, Khn O, Schmid H U 1992 IEEE RADECS 91:First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte, France, September 9—12, 1991 p380

    [7]

    Szafraniec B, Sanders G A 1999 J.Lig. Tech. 17 579

    [8]

    Lu Y H, Zhong S X 2004 Optoelectronic Technology 24 68 (in Chinese)[陆永红、钟生新 2004 光电子技术 24 68]

    [9]

    llenschel H, Khn O, Schmidt H U 1996 IEEE Trans. NucI. Sci. 43 1050

    [10]

    Gao S J, Ouyang S X 2003 Acta Phys. Sin. 52 1292 (in Chinese)[高祀建、欧阳世翕 2003 物理学报 52 1292]

    [11]

    Jiang X W,Qiu J R,Zhu C S,Ouyang S X,Hirao K,Gan F X 2001 Acta Phys. Sin. 50 871 (in Chinese) [姜雄伟、邱建荣、朱从善、欧阳世翕、Hirao K、干福熹 2001 物理学报 50 871]

    [12]

    Xiao Z Y, Luo W Y 2007 Acta Phys. Sin. 56 2731 (in Chinese)[肖中银、罗文芸、王廷云 2007 物理学报 56 2731]

    [13]

    Weeks R A 1956 J. Appl. Phys. 27 1376

    [14]

    Nagasawa H, Hoshi Y, Ohki Y 1987 Jpn. J. Appl. Phys. 26 554

    [15]

    Imai H, Arai K 1988 Phys. Rev. B 38 12772

    [16]

    Nishikawa H, Nakamura R, Tohmon R 1990 Phys. Rev. B 41 7828

    [17]

    Rich T C, Pinnow D A 1972 Appl.Phys.Lett. 20 264

    [18]

    Han Y L, Xiao W, Yi X S, Zhang Y C 2008 Infrared and Laser Engineering 37 128 (in Chinese)[韩艳玲、肖 文、伊小素、张运春 2008 红外与激光工程 37 128]

    [19]

    Gan F X 2002 Infrared and Laser Engineering 21 64 (in Chinese)[干福熹 2002 红外与激光工程 21 64]

    [20]

    He W, Li J Z, Mei J C 2005 Journal of Inorganic Materials 20 210 (in Chinese) [何 伟、李剑芝、梅家纯 2005 无机材料学报 20 210]

  • [1] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [2] 何乐, 褚应波, 戴能利, 李进延. 石英基L波段扩展掺铒光纤及其放大性能. 物理学报, 2022, 71(15): 154204. doi: 10.7498/aps.71.20220503
    [3] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术. 物理学报, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [4] 刘鹏, 廖雷, 褚应波, 王一礴, 胡雄伟, 彭景刚, 李进延, 戴能利. 掺Bi石英光纤的射线辐照和温度影响特性. 物理学报, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [5] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [6] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [7] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征. 物理学报, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [8] 延凤平, 嵇叶楠, 王琳, 龚桃荣, 刘鹏, 陶沛琳, 王文杰. 石英基掺Tm3+光纤激光器特性的理论分析. 物理学报, 2010, 59(11): 7899-7905. doi: 10.7498/aps.59.7899
    [9] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究. 物理学报, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [10] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [11] 延凤平, 王琳, 魏淮, 傅永军, 简伟, 郑凯, 毛向桥, 李坚, 刘利松, 彭健, 简水生. 石英基掺Yb3+光纤中Al3+共掺特性的研究. 物理学报, 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [12] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [13] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [14] 赵兴海, 高 杨, 徐美健, 段文涛, 於海武. 纳秒激光诱导石英光纤端面损伤特性研究. 物理学报, 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [15] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [16] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [17] 巩稼民, 方强, 刘娟, 王永昌. 密集波分复用石英光纤中受激喇曼散射对信号光的影响. 物理学报, 2000, 49(3): 449-454. doi: 10.7498/aps.49.449
    [18] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
    [19] 巩稼民, 刘 娟, 方 强, 王永昌. 密集波分复用石英光纤通信系统中受激Raman散射的稳态分析模型. 物理学报, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [20] 宋祥云, 温树林. 碲镉汞辐射损伤的微观过程. 物理学报, 1988, 37(2): 301-304. doi: 10.7498/aps.37.301
计量
  • 文章访问数:  6203
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-04
  • 修回日期:  2010-01-20
  • 刊出日期:  2010-11-15

石英光纤γ辐照损伤及其对近红外导波特性的影响

  • 1. (1)日本东京农工大学工学院 应用化学系,日本 184-8588; (2)上海理工大学光电信息与计算机学院,上海 200093; (3)上海理工大学光电信息与计算机学院,上海 200093;上海航天控制技术研究所,上海 200233
    基金项目: 国家自然科学基金(批准号:60677032)资助的课题

摘要: 围绕光纤陀螺的近红外工作波长,从回波损耗、偏振相关损耗、散射损耗、吸收损耗、模场分布以及导模传播常数等方面实验考察了总剂量为120 krad (1.2 kGy)的γ辐照对石英单模光纤导波特性的影响;用近红外光谱技术和受激喇曼散射实验估计了相应的隙内缺陷能级及其增量;用X衍射考察了介质密度变动;采用高灵敏度干涉回路观察到了γ辐照光纤的光热效应,测试数据表明紫外退火具有一定的修复作用,揭示了紫外退火作为一种主动加固方式用于抗γ辐照的可能性.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回