搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有横向磁晶各向异性的钴纳米线的微波吸收性能

陈文兵 韩满贵 邓龙江

引用本文:
Citation:

具有横向磁晶各向异性的钴纳米线的微波吸收性能

陈文兵, 韩满贵, 邓龙江

Microwave absorbing properties of cobalt nanowires with transverse magnetocrystalline anisotropy

Chen Wen-Bing, Han Man-Gui, Deng Long-Jiang
PDF
导出引用
  • 使用电化学脉冲沉积法制备了磁晶各向异性易磁化方向(c轴)垂直纳米线长轴方向的钴纳米线.受到磁晶各向异性、静磁相互作用等因素与形状各向异性相互竞争的结果,纳米线阵列的磁滞回线显示出较弱的磁各向异性.此外,在2—18 GHz频率范围内,纳米线/石蜡复合材料的介电色散谱的虚部在5 GHz处有一个主峰,在10 GHz附近有一个较弱的峰;德拜弛豫特性和材料的电导率对这两个峰的形成均有贡献.同时,其磁导率色散谱的虚部在频率为6.1 GHz处有一个主峰,在10 GHz以上有两个较微弱的峰. 前一个峰源于自
    Cobalt nanowires with c-axis perpendicular to the axial direction have been fabricated by the pulsed electrodeposition method. The hysterisis loops of the cobalt nanowire array show little anisotropy due to the competition between shape anisotropy and factors such as magnetocrystalline anisotropy and magnetostatic interaction. The permittivity and permeability dispersion spectra of the nanowire/paraffin composite were measured in the frequency range of 2—18 GHz. It was found that the imaginary part of the permittivity spectra shows a strong peak around 5 GHz and a weak peak around 10 GHz, which are contributed by the Debye relaxation and the conductivity of the nanowires. In the meantime, the imaginary part of the permeability spectra for the nanowire/paraffin composite samples exhibits a strong absorption peak at 6.1 GHz and two minor peaks above 10 GHz. The peak at 6.1 GHz is attributed to the natural resonance mechanism and the other two peaks are duc to eddy current effect. The permeability spectra attributed to natural resonance are fitted using the Landau–Lifshitz–Gilbert equation. Calculation based on the Kittel equation substantiates our fitting results. The electromagnetic wave reflection loss of the nanowire/paraffin composite sample is lower than -20 dB when the thickness of the nanowire/paraffin composite has been adjusted, suggesting that the cobalt nanowire composites can find application as a novel type of microwave absorbers.
    • 基金项目: 国家自然科学基金(批准号: 60701016)及国家自然科学基金委员会与英国皇家学会国际合作项目(批准号: 60911130130)资助的课题.
    [1]

    Yan J F, Zhang Z Y, You T G, Zhao W, Yun J N, Zhang F C 2009 Chin. Phys. B 18 4552

    [2]

    Budnick J I, Taylor G W 2002 Appl. Phys. Lett. 80 4404

    [3]

    Han M G, Ou Y, Liang D F, Deng L J 2009 Chin. Phys. B 18 1601

    [4]

    Liu X G, Geng D Y, Meng H, Shang P J, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [5]

    Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, Lei J P, Lee C G 2006 Appl. Phys. Lett. 89 053115

    [6]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [7]

    Dong X L, Zhang X F, Huang H, Zuo F 2008 Appl. Phys. Lett. 92 013127

    [8]

    Ma Q, Jiang J J, Bie S W, Du G, Feng Z K, He H H 2008 Acta. Phys. Sin. 57 6577 (in Chinese)[马 强、 江建军、 别少伟、 杜 刚、 冯则坤、 何华辉 2008 物理学报 57 6577]

    [9]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta. Phys. Sin. 54 3878 (in Chinese)[赵东林、 曾宪伟、 沈曾民 2005 物理学报 54 3878]

    [10]

    Ma Q, Jiang J J, Bie S W, Tian B, Liang P, He H H 2009 Chin. Phys. B 18 2063

    [11]

    Han Z, Li D, Wang H, Liu X G., Li J, Geng D Y, Zhang Z D 2009 Appl. Phys. Lett. 95 023114

    [12]

    Gong Y X, Zhen L, Jiang J T, Xu C Y, Shao W Z 2009 J. Appl. Phys. 106 064302

    [13]

    Encinas A, Vila L, Darques M, George J M, Piraux L 2007 Nanotechnology 18 065705

    [14]

    Darques M, Encinas A, Vila L, Piraux L 2004 J. Phys. D: Appl. Phys. 37 1411

    [15]

    Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U 2005 Appl. Phys. Lett. 86 072508

    [16]

    Zhang J, Jones G A, Shen T H, Donnelly S E, Li G H 2007 J. Appl. Phys. 101 054310

    [17]

    Ursache A, Goldbach J T, Russell T P, Tuominen M T 2005 J. Appl. Phys. 97 10J322

    [18]

    Han X H, Liu Q F, Wang J B, Li S L, Ren Y, Liu R L, Li F S 2009 J. Phys. D: Appl. Phys. 42 095005

    [19]

    Li D D, Thompson R S, Bergmann G, Lu J G 2008 Adv. Mater. 20 4575

    [20]

    Qunadjela K, Ferré R, Louail L, George J M, Maurice J L, Piraux L, Dubois S 1997 J. Appl. Phys. 81 5455

    [21]

    Encinas-Oropesa A, Demand M, Piraux L, Huynen I, Ebels U 2001 Phys. Rev. B 63 104415

    [22]

    http: //math. nist. gov/oommf

    [23]

    Xu D W, Gao H, Xue D S 2007 Acta. Phys. Sin. 56 7274(in Chinese)[徐东伟、 高 华、 薛德胜 2007 物理学报 56 7274]

    [24]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119

    [25]

    Jiang M J, Dang Z M, Bozlar M, Miomandre F, Bai J 2009 J. Appl. Phys. 106 084902

    [26]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6—139 (in Chinese)[廖绍彬 1998 铁磁学(北京: 科学出版社)第6—139页]

    [27]

    Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A,

    [28]

    Goglio G, Pignard S, Radulescu A, Piraux L, Huynen I, Vanhoenacker D, Vorst A V 1999 Appl. Phys. Lett. 75 1769

    [29]

    Cao J W, Huang Y H, Zhang Y, Liao Q L, Deng Z Q 2008 Acta. Phys. Sin. 57 3641(in Chinese)[曹佳伟、 黄运华、 张 跃、 廖庆亮、 邓战强 2008 物理学报 57 3641]

    [30]

    Shi X L, Cao M S, Yuan J, Fang X Y 2009 Appl. Phys. Lett. 95 163108

  • [1]

    Yan J F, Zhang Z Y, You T G, Zhao W, Yun J N, Zhang F C 2009 Chin. Phys. B 18 4552

    [2]

    Budnick J I, Taylor G W 2002 Appl. Phys. Lett. 80 4404

    [3]

    Han M G, Ou Y, Liang D F, Deng L J 2009 Chin. Phys. B 18 1601

    [4]

    Liu X G, Geng D Y, Meng H, Shang P J, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [5]

    Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, Lei J P, Lee C G 2006 Appl. Phys. Lett. 89 053115

    [6]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [7]

    Dong X L, Zhang X F, Huang H, Zuo F 2008 Appl. Phys. Lett. 92 013127

    [8]

    Ma Q, Jiang J J, Bie S W, Du G, Feng Z K, He H H 2008 Acta. Phys. Sin. 57 6577 (in Chinese)[马 强、 江建军、 别少伟、 杜 刚、 冯则坤、 何华辉 2008 物理学报 57 6577]

    [9]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta. Phys. Sin. 54 3878 (in Chinese)[赵东林、 曾宪伟、 沈曾民 2005 物理学报 54 3878]

    [10]

    Ma Q, Jiang J J, Bie S W, Tian B, Liang P, He H H 2009 Chin. Phys. B 18 2063

    [11]

    Han Z, Li D, Wang H, Liu X G., Li J, Geng D Y, Zhang Z D 2009 Appl. Phys. Lett. 95 023114

    [12]

    Gong Y X, Zhen L, Jiang J T, Xu C Y, Shao W Z 2009 J. Appl. Phys. 106 064302

    [13]

    Encinas A, Vila L, Darques M, George J M, Piraux L 2007 Nanotechnology 18 065705

    [14]

    Darques M, Encinas A, Vila L, Piraux L 2004 J. Phys. D: Appl. Phys. 37 1411

    [15]

    Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U 2005 Appl. Phys. Lett. 86 072508

    [16]

    Zhang J, Jones G A, Shen T H, Donnelly S E, Li G H 2007 J. Appl. Phys. 101 054310

    [17]

    Ursache A, Goldbach J T, Russell T P, Tuominen M T 2005 J. Appl. Phys. 97 10J322

    [18]

    Han X H, Liu Q F, Wang J B, Li S L, Ren Y, Liu R L, Li F S 2009 J. Phys. D: Appl. Phys. 42 095005

    [19]

    Li D D, Thompson R S, Bergmann G, Lu J G 2008 Adv. Mater. 20 4575

    [20]

    Qunadjela K, Ferré R, Louail L, George J M, Maurice J L, Piraux L, Dubois S 1997 J. Appl. Phys. 81 5455

    [21]

    Encinas-Oropesa A, Demand M, Piraux L, Huynen I, Ebels U 2001 Phys. Rev. B 63 104415

    [22]

    http: //math. nist. gov/oommf

    [23]

    Xu D W, Gao H, Xue D S 2007 Acta. Phys. Sin. 56 7274(in Chinese)[徐东伟、 高 华、 薛德胜 2007 物理学报 56 7274]

    [24]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119

    [25]

    Jiang M J, Dang Z M, Bozlar M, Miomandre F, Bai J 2009 J. Appl. Phys. 106 084902

    [26]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6—139 (in Chinese)[廖绍彬 1998 铁磁学(北京: 科学出版社)第6—139页]

    [27]

    Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A,

    [28]

    Goglio G, Pignard S, Radulescu A, Piraux L, Huynen I, Vanhoenacker D, Vorst A V 1999 Appl. Phys. Lett. 75 1769

    [29]

    Cao J W, Huang Y H, Zhang Y, Liao Q L, Deng Z Q 2008 Acta. Phys. Sin. 57 3641(in Chinese)[曹佳伟、 黄运华、 张 跃、 廖庆亮、 邓战强 2008 物理学报 57 3641]

    [30]

    Shi X L, Cao M S, Yuan J, Fang X Y 2009 Appl. Phys. Lett. 95 163108

  • [1] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究. 物理学报, 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [2] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [3] 傅成武, 张拴勤, 陈明清. 包覆型纳米纤维吸收剂的电磁性能研究. 物理学报, 2012, 61(19): 197501. doi: 10.7498/aps.61.197501
    [4] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究. 物理学报, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [5] 付乌有, 曹静, 李伊荇, 杨海滨. 类花状ZnO-CoFe2 O4 复合纳米管束的制备及其电磁波吸收特性. 物理学报, 2011, 60(6): 067505. doi: 10.7498/aps.60.067505
    [6] 张拴勤, 石云龙. 制备条件对纳米晶吸收剂的吸波性能影响的实验研究. 物理学报, 2010, 59(6): 4216-4220. doi: 10.7498/aps.59.4216
    [7] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究. 物理学报, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [8] 李盛涛, 成鹏飞, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [9] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [10] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响. 物理学报, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [11] 张拴勤, 石云龙, 黄长庚, 连长春. 雷达波吸收剂的包覆改性设计. 物理学报, 2007, 56(3): 1231-1237. doi: 10.7498/aps.56.1231
    [12] 赵东林, 曾宪伟, 沈曾民. 碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究. 物理学报, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [13] 刘青芳, 王建波, 彭勇, 曹兴忠, 薛德胜. 铁镍合金纳米线阵列的制备与穆斯堡尔谱研究. 物理学报, 2001, 50(10): 2008-2011. doi: 10.7498/aps.50.2008
    [14] 王成伟, 彭 勇, 潘善林, 张浩力, 力虎林. α-Fe纳米线阵列膜磁各向异性的穆斯堡尔谱研究. 物理学报, 1999, 48(11): 2146-2150. doi: 10.7498/aps.48.2146
    [15] 何华辉, 吴明忠, 赵振声. 多晶铁纤维吸收剂微波电磁参数的各向异性研究. 物理学报, 1999, 48(13): 138-143. doi: 10.7498/aps.48.138
    [16] 李景德, 陈 敏, 方传代, 李智强, 雷德铭. 极性相变的介电谱研究. 物理学报, 1999, 48(4): 721-728. doi: 10.7498/aps.48.721
    [17] 李景德, 邓人忠, 陈敏, 郑凤. 绝缘液体中空间电荷的扩散和介电谱. 物理学报, 1997, 46(1): 155-161. doi: 10.7498/aps.46.155
    [18] 蒋亦民. 关于色散流体的介电方程. 物理学报, 1997, 46(7): 1332-1337. doi: 10.7498/aps.46.1332
    [19] 李景德, 曹万强, 李向前, 符德胜. 时域介电谱方法及其应用. 物理学报, 1996, 45(7): 1225-1231. doi: 10.7498/aps.45.1225
    [20] 刘湘娜, 何宇亮, F. WANG, R. SCHWARZ. 纳米硅薄膜光吸收谱的研究. 物理学报, 1993, 42(12): 1979-1984. doi: 10.7498/aps.42.1979
计量
  • 文章访问数:  5012
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-08
  • 修回日期:  2010-04-21
  • 刊出日期:  2011-01-15

具有横向磁晶各向异性的钴纳米线的微波吸收性能

  • 1. 电子科技大学电子薄膜与集成器件国家重点实验室,成都 610054
    基金项目: 国家自然科学基金(批准号: 60701016)及国家自然科学基金委员会与英国皇家学会国际合作项目(批准号: 60911130130)资助的课题.

摘要: 使用电化学脉冲沉积法制备了磁晶各向异性易磁化方向(c轴)垂直纳米线长轴方向的钴纳米线.受到磁晶各向异性、静磁相互作用等因素与形状各向异性相互竞争的结果,纳米线阵列的磁滞回线显示出较弱的磁各向异性.此外,在2—18 GHz频率范围内,纳米线/石蜡复合材料的介电色散谱的虚部在5 GHz处有一个主峰,在10 GHz附近有一个较弱的峰;德拜弛豫特性和材料的电导率对这两个峰的形成均有贡献.同时,其磁导率色散谱的虚部在频率为6.1 GHz处有一个主峰,在10 GHz以上有两个较微弱的峰. 前一个峰源于自

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回