搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类花状ZnO-CoFe2 O4 复合纳米管束的制备及其电磁波吸收特性

付乌有 曹静 李伊荇 杨海滨

引用本文:
Citation:

类花状ZnO-CoFe2 O4 复合纳米管束的制备及其电磁波吸收特性

付乌有, 曹静, 李伊荇, 杨海滨

Preparation and electromagnetic wave absorption of flower-like ZnO-CoFe2 O4 nanotube bundles composites

Fu Wu-You, Cao Jing, Li Yi-Xing, Yang Hai-Bin
PDF
导出引用
  • 在90 ℃水溶液中采用两步晶体生长法制备出类花状ZnO-CoFe2O4复合纳米管束.ZnO纳米管束的管壁厚度大约为60 nm,管的直径大约为350 nm,CoFe2O4纳米颗粒连续包覆在ZnO纳米管束的表面,CoFe2O4纳米颗粒尺寸小于40 nm, 壳层厚度随着CoFe2O4在ZnO-CoFe2O4
    Flower-like ZnO-CoFe2O4 nanotube bundle composites are prepared via two-step crystal growth process in water solution at 90 ℃, the wall thicknesses of the ZnO nanotubes are all about 60 nm, inner diameters of the tubes are all about 350 nm, ZnO nanotubes have been coated with CoFe2O4 nanoparticles, and the sizes of CoFe2O4 nanoparticles are below 40 nm. The thickness of CoFe2O4 coating layer increases with the increase of the content of CoFe2O4 in ZnO-CoFe2O4 composites. By using Flower-like ZnO,flower-like ZnO-CoFe2O4 nanotube bundles and CoFe2O4 nanoparticles as absorbents, and phenolic resin as the binder, their electromagnetic wave absorption properties are investigated, and the results show that the microwave wave absorbing performance is evidently improved compared with that of ZnO nanotube bundles and CoFe2O4 particles. When the content of ZnO is 60%, the maximum reflection loss is 28.3 dB.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号: 200801831006)资助的课题.
    [1]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Aata Phys. Sin. 59 1946 (in Chinese)[王 建、李会峰、黄运华、余海波、张 跃 2010 物理学报 59 1946]

    [2]

    Xu P, Han X, Jiang J J, Wang X H, Li X D, Wen A H 2007 J. Phys. Chem. C 111 12603

    [3]

    Ma Q, Jiang J J, Bie S W, Tian B, Liang P, He H H 2009 Chin. Phys. B 18 2063

    [4]

    Miquel H G, Kurlyandskaya G V 2008 Chin. Phys. B 17 1430

    [5]

    Kang Y Q, Cao M S, Yuan J, Fang X Y 2010 Chin. Phys. B 19 017701

    [6]

    Deng L W, Jiang J J, Feng Z K, Zhang X C, He H H 2004 Aata Phys. Sin. 53 4359(in Chinese) [邓联文、江建军、冯则坤、张秀成、何华辉 2004 物理学报 53 4359]

    [7]

    Wan J, Wang X 2005 Appl. Phys. Lett. 86 122501

    [8]

    Fu W Y, Liu S K 2007 J. Magn. Magn. Mater. 316 54

    [9]

    Cao J W, Huang Y H, Zhang Y, Liao Q L, Deng Z Q 2008 Aata Phys. Sin. 57 364 (in Chinese)[曹佳伟、黄运华、张 跃、廖庆亮、邓战强 2008 物理学报 57 3641]

    [10]

    Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 8

    [11]

    Ma K, Li H, Zhang H, Xu X L, Gong M G, Yang Z 2009 Chin. Phys. B 18 1942

    [12]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [13]

    Li H F, Huang Y H, Zhang Y, Gao X X, Zhao J, Wang J 2009 Aata Phys. Sin. 58 2702 (in Chinese)[李会峰、黄运华、张 跃、高祥熙、赵 婧、王 建 2009 物理学报 58 2702]

    [14]

    Han X H, Wang G Z, Jie J S, Choy W C H, Luo Y, Yuk T I, Hou J G 2005 J. Phys. Chem. B 109 2733

    [15]

    Yu Q J, Fu W Y, Cui L Y, Yang H B, Guang T Z 2007 J. Phys. Chem. C 111 17521

    [16]

    Yuan H T, Zhang Y, Gu J H 2004 Aata Phys. Sin. 53 646 (in Chinese)[袁洪涛、张 跃、谷景华 2004 物理学报 53 646]

    [17]

    Cheng X W, Li X, Gao Y L, Yu Z, Long X, Liu Y 2009 Aata Phys. Sin. 58 2018(in Chinese)[程兴旺、李 祥、高院玲、于 宙、龙 雪、刘 颖 2009 物理学报 58 2018]

    [18]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [19]

    Kim S, Yoon Y J 2005 J. Appl. Phys. 97 10F905

    [20]

    Miles P A, Westphal W B 1957 Rev. Mod. Phys. 29 279

  • [1]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Aata Phys. Sin. 59 1946 (in Chinese)[王 建、李会峰、黄运华、余海波、张 跃 2010 物理学报 59 1946]

    [2]

    Xu P, Han X, Jiang J J, Wang X H, Li X D, Wen A H 2007 J. Phys. Chem. C 111 12603

    [3]

    Ma Q, Jiang J J, Bie S W, Tian B, Liang P, He H H 2009 Chin. Phys. B 18 2063

    [4]

    Miquel H G, Kurlyandskaya G V 2008 Chin. Phys. B 17 1430

    [5]

    Kang Y Q, Cao M S, Yuan J, Fang X Y 2010 Chin. Phys. B 19 017701

    [6]

    Deng L W, Jiang J J, Feng Z K, Zhang X C, He H H 2004 Aata Phys. Sin. 53 4359(in Chinese) [邓联文、江建军、冯则坤、张秀成、何华辉 2004 物理学报 53 4359]

    [7]

    Wan J, Wang X 2005 Appl. Phys. Lett. 86 122501

    [8]

    Fu W Y, Liu S K 2007 J. Magn. Magn. Mater. 316 54

    [9]

    Cao J W, Huang Y H, Zhang Y, Liao Q L, Deng Z Q 2008 Aata Phys. Sin. 57 364 (in Chinese)[曹佳伟、黄运华、张 跃、廖庆亮、邓战强 2008 物理学报 57 3641]

    [10]

    Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 8

    [11]

    Ma K, Li H, Zhang H, Xu X L, Gong M G, Yang Z 2009 Chin. Phys. B 18 1942

    [12]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [13]

    Li H F, Huang Y H, Zhang Y, Gao X X, Zhao J, Wang J 2009 Aata Phys. Sin. 58 2702 (in Chinese)[李会峰、黄运华、张 跃、高祥熙、赵 婧、王 建 2009 物理学报 58 2702]

    [14]

    Han X H, Wang G Z, Jie J S, Choy W C H, Luo Y, Yuk T I, Hou J G 2005 J. Phys. Chem. B 109 2733

    [15]

    Yu Q J, Fu W Y, Cui L Y, Yang H B, Guang T Z 2007 J. Phys. Chem. C 111 17521

    [16]

    Yuan H T, Zhang Y, Gu J H 2004 Aata Phys. Sin. 53 646 (in Chinese)[袁洪涛、张 跃、谷景华 2004 物理学报 53 646]

    [17]

    Cheng X W, Li X, Gao Y L, Yu Z, Long X, Liu Y 2009 Aata Phys. Sin. 58 2018(in Chinese)[程兴旺、李 祥、高院玲、于 宙、龙 雪、刘 颖 2009 物理学报 58 2018]

    [18]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [19]

    Kim S, Yoon Y J 2005 J. Appl. Phys. 97 10F905

    [20]

    Miles P A, Westphal W B 1957 Rev. Mod. Phys. 29 279

  • [1] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究. 物理学报, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [2] 李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为. -Fe2O3/NiO核-壳纳米花的合成、微结构与磁性. 物理学报, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [3] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春. ZnO纳米花的制备及其性能. 物理学报, 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [4] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [5] 陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算. 物理学报, 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [6] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [8] 高若瑞, 喻伟, 费春龙, 张悦, 熊锐, 石兢. CoFe2O4和MnFe2O4纳米复合介质的制备及其磁性研究. 物理学报, 2012, 61(20): 207502. doi: 10.7498/aps.61.207502
    [9] 傅成武, 张拴勤, 陈明清. 包覆型纳米纤维吸收剂的电磁性能研究. 物理学报, 2012, 61(19): 197501. doi: 10.7498/aps.61.197501
    [10] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [11] 陈文兵, 韩满贵, 邓龙江. 具有横向磁晶各向异性的钴纳米线的微波吸收性能. 物理学报, 2011, 60(1): 017507. doi: 10.7498/aps.60.017507
    [12] 王建, 李会峰, 黄运华, 余海波, 张跃. 碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性. 物理学报, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [13] 张拴勤, 石云龙. 制备条件对纳米晶吸收剂的吸波性能影响的实验研究. 物理学报, 2010, 59(6): 4216-4220. doi: 10.7498/aps.59.4216
    [14] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [15] 张拴勤, 石云龙, 黄长庚, 连长春. 雷达波吸收剂的包覆改性设计. 物理学报, 2007, 56(3): 1231-1237. doi: 10.7498/aps.56.1231
    [16] 陈祥磊, 郗传英, 叶邦角, 翁惠民. 碳纳米管束中的正电子理论. 物理学报, 2007, 56(11): 6695-6700. doi: 10.7498/aps.56.6695
    [17] 王 丽, 王海波, 王 涛, 李发伸. CoFe2O4纳米颗粒的结构、磁性以及离子迁移. 物理学报, 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [18] 唐元洪, 林良武, 郭 池. 多壁碳纳米管束储氢机理的X射线吸收谱研究. 物理学报, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [19] 赵东林, 曾宪伟, 沈曾民. 碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究. 物理学报, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [20] 何华辉, 吴明忠, 赵振声. 多晶铁纤维吸收剂微波电磁参数的各向异性研究. 物理学报, 1999, 48(13): 138-143. doi: 10.7498/aps.48.138
计量
  • 文章访问数:  4562
  • PDF下载量:  1954
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-09
  • 修回日期:  2010-10-13
  • 刊出日期:  2011-03-05

类花状ZnO-CoFe2 O4 复合纳米管束的制备及其电磁波吸收特性

  • 1. 吉林大学超硬材料国家重点实验室, 长春 130012
    基金项目: 高等学校博士学科点专项科研基金(批准号: 200801831006)资助的课题.

摘要: 在90 ℃水溶液中采用两步晶体生长法制备出类花状ZnO-CoFe2O4复合纳米管束.ZnO纳米管束的管壁厚度大约为60 nm,管的直径大约为350 nm,CoFe2O4纳米颗粒连续包覆在ZnO纳米管束的表面,CoFe2O4纳米颗粒尺寸小于40 nm, 壳层厚度随着CoFe2O4在ZnO-CoFe2O4

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回