搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pr2Fe14(C,B)/α-(Fe,Co)型纳米晶复合磁体的结构与磁性

李安华 赖彬 王会杰 朱明刚 李卫

引用本文:
Citation:

Pr2Fe14(C,B)/α-(Fe,Co)型纳米晶复合磁体的结构与磁性

李安华, 赖彬, 王会杰, 朱明刚, 李卫

Structure and magnetic properties of Pr2Fe14(C, B)/α-(Fe, Co)-type nanocomposite ribbons

Li An-Hua, Lai Bin, Wang Hui-Jie, Zhu Ming-Gang, Li Wei
PDF
导出引用
  • 研究了PrxFe82-x-yTiyCo10B4C4 (x=9—10.5;y=0, 2)纳米晶薄带的结构与磁性. 结果表明,所有薄带皆主要由2∶14∶1, 2∶17和α-(Fe, Co)三相组成. 对于y=0的合金,其内禀矫顽力随Pr含量x的增加而增加,剩磁随Pr含量x的增加而减小. 以Ti置换部分Fe (y=2),合金的磁性能得到显著提高,表现为:添加Ti后,合金的剩磁Br基本不降低,x=10.5时合金的Br值甚至有较明显的提高;同时添加Ti后,合金的内禀矫顽力及退磁曲线的方形度都明显改善. 当x=10.5,y=2时,合金薄带的磁性能达到最佳值为: Br=9.6 kGs(1 Gs=10-4 T),iHc =10.2 kOe(1 Oe=79.5775 A/m)和(BH)max=17.4 MGOe. 随着Pr含量的提高,合金中的硬磁相2 ∶14 ∶1的含量相对增加,内禀矫顽力提高;而Ti置换Fe抑制了软磁相α-(Fe, Co)在快淬和热处理过程中的优先长大,使合金中软磁相和硬磁相的晶粒尺寸及比例趋向最佳组合,交换耦合作用明显增强.
    The phase evolution, microstructure and magnetic properties of PrxFe82-x-yTiyCo10B4C4 (x=9—10.5; y=0, 2) melt-spun ribbons have been investigated. All ribbons are mainly comprised of the 2 ∶14 ∶1, 2 ∶17 and α-(Fe, Co) phases. For the group of Ti-free ribbons (y=0), the coercivity increases with increasing x while the remanence decreases with increasing x. When 2 at.%Ti is substituted for Fe in the Ti-free ribbons, the magnetic properties are remarkably enhanced. The coercivity and squareness of demagnetization curve of the Ti-substitution ribbons are substantially improved without a sacrifice of remanence (except for x=9), the remanence even obviously increases at x=10.5. The optimal magnetic properties of Br=9.6 kGs (1 Gs=10-4T), iHc =10.2 kOe (1 Oe=79.5775 A/m), (BH)max=17.4 MGOe have been obtained in Ti-substituted Pr10.5Fe69.5Ti2Co10B4C4 group. The volume fraction of the 2 ∶14 ∶1 phase increases with increasing x, which leads to an increase of coercivity. Ti-substitution suppresses the grain growth of α-(Fe, Co) phase during annealing process, which makes the volume ratio of magnetically hard phase and soft phase and grain size tend to have optimal values, and the intergranular exchange coupling substantially enhances.
    • 基金项目: 国家自然科学基金(批准号:50804011,50931001)资助的课题.
    [1]

    Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812

    [3]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [4]

    Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859

    [5]

    Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315

    [6]

    Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]

    [7]

    Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]

    [8]

    Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]

    [9]

    Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100

    [10]

    Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112

    [11]

    Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167

    [12]

    Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263

    [13]

    Xing F, Ho W W 1990 J. Appl. Phys. 67 4604

    [14]

    Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223

    [15]

    Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349

    [16]

    Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704

    [17]

    Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231

    [18]

    Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627

    [19]

    Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403

    [20]

    Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647

    [21]

    Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316

    [22]

    Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769

    [23]

    Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388

    [24]

    Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201

    [25]

    Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129

  • [1]

    Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812

    [3]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [4]

    Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859

    [5]

    Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315

    [6]

    Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]

    [7]

    Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]

    [8]

    Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]

    [9]

    Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100

    [10]

    Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112

    [11]

    Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167

    [12]

    Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263

    [13]

    Xing F, Ho W W 1990 J. Appl. Phys. 67 4604

    [14]

    Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223

    [15]

    Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349

    [16]

    Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704

    [17]

    Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231

    [18]

    Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627

    [19]

    Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403

    [20]

    Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647

    [21]

    Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316

    [22]

    Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769

    [23]

    Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388

    [24]

    Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201

    [25]

    Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129

  • [1] 孙亚超, 朱明刚, 石晓宁, 宋利伟, 李卫. Nd-Ce-Fe-B纳米复合薄膜的磁性及交换耦合作用. 物理学报, 2017, 66(15): 157502. doi: 10.7498/aps.66.157502
    [2] 王一军, 刘洋, 于广华. Pt插层对铁磁/反铁磁界面交换耦合的影响. 物理学报, 2012, 61(16): 167503. doi: 10.7498/aps.61.167503
    [3] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [4] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [5] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [6] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性. 物理学报, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [7] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安. 纳米晶复合Pr2Fe14B/α-Fe永磁材料磁性的研究. 物理学报, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [8] 陈宪锋. R2Fe14B型永磁材料中第二磁晶各向异性常数对反磁化过程的影响. 物理学报, 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [9] 贺淑莉, 张宏伟, 荣传兵, 陈仁杰, 孙继荣, 沈保根. 晶粒易轴取向度对纳米晶永磁Pr2Fe14B磁性的影响. 物理学报, 2005, 54(7): 3408-3413. doi: 10.7498/aps.54.3408
    [10] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [11] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理. 物理学报, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [12] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd28Fe66B6/Fe50Co50双层纳米复合膜的结构和磁性. 物理学报, 2005, 54(10): 4889-4893. doi: 10.7498/aps.54.4889
    [13] 荣传兵, 张宏伟, 陈仁杰, 贺淑莉, 张绍英, 沈保根. 纳米晶永磁材料晶间交换耦合作用的模拟计算研究. 物理学报, 2004, 53(12): 4353-4358. doi: 10.7498/aps.53.4353
    [14] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr8Fe87B5反磁化机理研究. 物理学报, 2003, 52(3): 722-725. doi: 10.7498/aps.52.722
    [15] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [16] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应. 物理学报, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [17] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
    [18] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [19] 王亦忠, 胡季帆, 张绍英, 张宏伟, 沈保根. Nd-Fe(Co,Nb)-B交换耦合磁体的磁性. 物理学报, 1999, 48(3): 520-526. doi: 10.7498/aps.48.520
    [20] 徐文革, 刘英烈, 季松泉, 初大平, 徐游, 杨桂林. R2Fe14B(R=Ce,Pr,Gd)磁晶各向异性常数K1,K2随温度的变化. 物理学报, 1986, 35(12): 1592-1597. doi: 10.7498/aps.35.1592
计量
  • 文章访问数:  5832
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-13
  • 修回日期:  2010-05-26
  • 刊出日期:  2011-01-05

Pr2Fe14(C,B)/α-(Fe,Co)型纳米晶复合磁体的结构与磁性

  • 1. 钢铁研究总院功能材料研究所,北京 100081
    基金项目: 国家自然科学基金(批准号:50804011,50931001)资助的课题.

摘要: 研究了PrxFe82-x-yTiyCo10B4C4 (x=9—10.5;y=0, 2)纳米晶薄带的结构与磁性. 结果表明,所有薄带皆主要由2∶14∶1, 2∶17和α-(Fe, Co)三相组成. 对于y=0的合金,其内禀矫顽力随Pr含量x的增加而增加,剩磁随Pr含量x的增加而减小. 以Ti置换部分Fe (y=2),合金的磁性能得到显著提高,表现为:添加Ti后,合金的剩磁Br基本不降低,x=10.5时合金的Br值甚至有较明显的提高;同时添加Ti后,合金的内禀矫顽力及退磁曲线的方形度都明显改善. 当x=10.5,y=2时,合金薄带的磁性能达到最佳值为: Br=9.6 kGs(1 Gs=10-4 T),iHc =10.2 kOe(1 Oe=79.5775 A/m)和(BH)max=17.4 MGOe. 随着Pr含量的提高,合金中的硬磁相2 ∶14 ∶1的含量相对增加,内禀矫顽力提高;而Ti置换Fe抑制了软磁相α-(Fe, Co)在快淬和热处理过程中的优先长大,使合金中软磁相和硬磁相的晶粒尺寸及比例趋向最佳组合,交换耦合作用明显增强.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回