-
研究了PrxFe82-x-yTiyCo10B4C4 (x=9—10.5;y=0, 2)纳米晶薄带的结构与磁性. 结果表明,所有薄带皆主要由2∶14∶1, 2∶17和α-(Fe, Co)三相组成. 对于y=0的合金,其内禀矫顽力随Pr含量x的增加而增加,剩磁随Pr含量x的增加而减小. 以Ti置换部分Fe (y=2),合金的磁性能得到显著提高,表现为:添加Ti后,合金的剩磁Br基本不降低,x=10.5时合金的Br值甚至有较明显的提高;同时添加Ti后,合金的内禀矫顽力及退磁曲线的方形度都明显改善. 当x=10.5,y=2时,合金薄带的磁性能达到最佳值为: Br=9.6 kGs(1 Gs=10-4 T),iHc =10.2 kOe(1 Oe=79.5775 A/m)和(BH)max=17.4 MGOe. 随着Pr含量的提高,合金中的硬磁相2 ∶14 ∶1的含量相对增加,内禀矫顽力提高;而Ti置换Fe抑制了软磁相α-(Fe, Co)在快淬和热处理过程中的优先长大,使合金中软磁相和硬磁相的晶粒尺寸及比例趋向最佳组合,交换耦合作用明显增强.The phase evolution, microstructure and magnetic properties of PrxFe82-x-yTiyCo10B4C4 (x=9—10.5; y=0, 2) melt-spun ribbons have been investigated. All ribbons are mainly comprised of the 2 ∶14 ∶1, 2 ∶17 and α-(Fe, Co) phases. For the group of Ti-free ribbons (y=0), the coercivity increases with increasing x while the remanence decreases with increasing x. When 2 at.%Ti is substituted for Fe in the Ti-free ribbons, the magnetic properties are remarkably enhanced. The coercivity and squareness of demagnetization curve of the Ti-substitution ribbons are substantially improved without a sacrifice of remanence (except for x=9), the remanence even obviously increases at x=10.5. The optimal magnetic properties of Br=9.6 kGs (1 Gs=10-4T), iHc =10.2 kOe (1 Oe=79.5775 A/m), (BH)max=17.4 MGOe have been obtained in Ti-substituted Pr10.5Fe69.5Ti2Co10B4C4 group. The volume fraction of the 2 ∶14 ∶1 phase increases with increasing x, which leads to an increase of coercivity. Ti-substitution suppresses the grain growth of α-(Fe, Co) phase during annealing process, which makes the volume ratio of magnetically hard phase and soft phase and grain size tend to have optimal values, and the intergranular exchange coupling substantially enhances.
-
Keywords:
- nanocrystalline permannet magnets /
- Pt2Fe14(C /
- B) /
- Ti-substitute /
- exchange coupling
[1] Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101
[2] Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812
[3] Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588
[4] Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859
[5] Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315
[6] Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]
[7] Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]
[8] Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]
[9] Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100
[10] Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112
[11] Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167
[12] Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263
[13] Xing F, Ho W W 1990 J. Appl. Phys. 67 4604
[14] Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223
[15] Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349
[16] Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704
[17] Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231
[18] Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627
[19] Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403
[20] Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647
[21] Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316
[22] Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769
[23] Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388
[24] Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201
[25] Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129
-
[1] Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101
[2] Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812
[3] Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588
[4] Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859
[5] Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315
[6] Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]
[7] Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]
[8] Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]
[9] Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100
[10] Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112
[11] Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167
[12] Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263
[13] Xing F, Ho W W 1990 J. Appl. Phys. 67 4604
[14] Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223
[15] Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349
[16] Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704
[17] Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231
[18] Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627
[19] Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403
[20] Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647
[21] Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316
[22] Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769
[23] Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388
[24] Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201
[25] Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129
计量
- 文章访问数: 8686
- PDF下载量: 737
- 被引次数: 0