搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角对称晶场中6 S(3d5)态离子零场分裂参量的微观起源

杨子元

引用本文:
Citation:

三角对称晶场中6 S(3d5)态离子零场分裂参量的微观起源

杨子元

Microscopic mechanism of the zero-field splitting parameters for 6 S(3d5) state ions at trigonal symmetry crystal filed

Yang Zi-Yuan
PDF
导出引用
  • 基于完全对角化方法(complete diagonalization method, CDM), 研究了6 S(3d5)态离子在三角晶场(包括C3v,D3,D3d点群对称晶场)中零场分裂(zero-field splitting, ZFS)参量D和(a-F)的微观起源.研究中除了考虑研究者通常考虑的SO(spin-orbit)磁相互作用外,同
    The microscopic mechanism of the zero-field splitting parameters (ZFS) including D and (a-F) for 6 S(3d5) state ion in trigonal-symmetry crystal field have been investigated using the complete diagonaliztion method (CDM) by taking into account the spin-spin (SS), the spin-other-orbit (SOO) and the orbit-orbit (OO) magnetic interactions besides the well-known spin-orbit (SO) magnetic interaction. It was found that the contribution to the ZFS parameters D and (a-F) arising from the spin-orbit (SO) magnetic interaction is the most important in most of the crystal field (CF) ranges,but the contribution to the zero-field splitting (ZFS) parameter D and (a-F) from the other three mechanisms, including the SS mechanism, SOO mechanism and OO mechanism, cant be ignored. The ZFS parameters D and (a-F) arise from the net spin quartet states as well as the combined effects of the spin doublet states and the spin quartets states, and the contribution to the ZFS parameters from the net spin doublet states are zero. Our investigation shows that the rank-2 ZFS parameter D primarily results from the net spin quartet states whereas the rank-4 ZFS parameter (a-F) primarily results from the combined effect of the spin doublet states and the spin quartet states. An illustrative evaluation is performed for the typical crystal material Fe3+: Al2O3. Good agreement between the theoretical values and the experimental finding are obtained.
    • 基金项目: 陕西省自然科学基金(批准号:2010JM1015)及宝鸡文理学院重点科研基金(批准号:ZK0842)资助的课题.
    [1]

    Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R, Chambers S A 2009 Phys. Rev. B 79 155203

    [2]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈 益、 周 勋、 徐 明、 丁迎春、 段满益、 令狐荣锋、 祝文军 2007 物理学报 56 3440]

    [3]

    Chikoidze E, Dumont Y, Von Bardeleben H J, Gleize J, Jomard F, Rzepka E, Berrerar G, Ferrand D, Gorochov O 2007 Appl. Phys. A 88 167

    [4]

    McCarty A D, Hassan A K, Brunel L C, Dziatkowski K, Furdyna J K 2005 Phys. Rev. Lett. 95 157201

    [5]

    Yang Z Y 2009 Chin. Phys. B 18 1253

    [6]

    Yang L, Yin C H, Jiao Y, Zhang L, Song N, Ru R P 2006 Acta Phys. Sin. 55 1991 (in Chinese) [杨 柳、 殷春浩、 焦 扬、 张 雷、 宋 宁、 茹瑞鹏 2006 物理学报 55 1991]

    [7]

    Rudowicz C, Gnutek P 2009 Physica B 404 3582

    [8]

    Yang Z Y , Hao Y 2005 Acta Phys. Sin. 54 2883 (in Chinese)[杨子元、 郝 跃 2005 物理学报 54 2883]

    [9]

    Yang Z Y 2010 Spectrochimica Acta Part A 75 277

    [10]

    Qi L, Kuang X Y, Chai R P, Duan M L, Zhang C X 2009 Chin. Phys. B 18 1586

    [11]

    Lu H P, Yin C H, Wei X S, Niu Y X, Song N, Ru R P 2007 Acta Phys. Sin. 56 6608 (in Chinese) [吕海萍、 殷春浩、 魏雪松、 钮应喜、 宋 宁、 茹瑞鹏 2007 物理学报 56 6608]

    [12]

    Blume M, Orbach R 1962 Phys. Rev. 127 1587

    [13]

    Macfarlane R M 1967 J. Chem. Phys. 47 2066

    [14]

    Yu W L, Wang J Z 1993 Phys. Stat. Sol. 176 433

    [15]

    Febbraro S 1987 J. Phys. C 20 5367

    [16]

    Wang J Z, Yu W L, Fang K 1991 Phys. Rev. B 43 2575

    [17]

    Barnes J A, Carroll B L, Flores L M, Hedges R M 1970 Atomic Data 2 1

    [18]

    Blume M, Watson R E 1963 Proc. Roy. Soc. (London)A 271 565

    [19]

    Blume M, Watson R E 1962 Proc. Roy. Soc. (London)A 270 127

    [20]

    Marvin H H 1947 Phys. Rev. 71 102

    [21]

    Yang Z Y 2007 J. Lum. 126 753

    [22]

    Bramley R, Strach S J 1983 Chem. Rev. 83 49

    [23]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford 1986; Dover, New York)

    [24]

    Rudowicz C and Misra S K 2001 Appl. Spectr. Rev. 36 11

    [25]

    Gnutek P, Yang Z Y, Rudowicz C 2009 J. Phys.: Condens. Matter 21 455402

    [26]

    Lee S, Brodbeck C M, Yang C C 1977 Phys. Rev. B15 2469

    [27]

    Diaconu M, Schmidt H, Pppl A, Bttcher R, Hoentsch J, Klunker A, Spemann D, Hochmuth H, Lorenz M and Grundmann M 2005 Phys. Rev. B 72 085214

    [28]

    Yang Z Y, Hao Y, Rudowicz C, Yeung Y Y 2004 J. Phys.: Condens. Matter 16 3481

    [29]

    Rudowicz C, Yang Z Y, Yeung Y Y, Qin J 2003 J. Chem. Phys. Solids 64 1419

    [30]

    Yeung Y Y, Rudowicz C 1992 Computers Chem. 16 207

    [31]

    Yeung Y Y, Rudowicz C 1993 J. Computational Phys. 109 150

    [32]

    Wybourne B G 1965 Spectroscopic Properties of Rare Earths, John Wiley & Sons, Inc. New York

    [33]

    Powell M J D, Gabriel J R, Johnston D F 1960 Phys. Rev. Lett. 5 145

    [34]

    Fraga S, Karwowski J, Saxena K M S 1976 Handbook of Atomic Data, Elsevier, Amsterdam

    [35]

    Yu W L and Wang J Z 1992 Chinese Science Bulletin 37 1840 (in Chinese)[余万伦、王俊忠1992 科学通报 37 1840]

    [36]

    Zhao M G, Chin M 1995 Phys. Rev. B 52 10043

    [37]

    Lei Y 2001 Mater. Science and Engineer. B 86 206

  • [1]

    Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R, Chambers S A 2009 Phys. Rev. B 79 155203

    [2]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈 益、 周 勋、 徐 明、 丁迎春、 段满益、 令狐荣锋、 祝文军 2007 物理学报 56 3440]

    [3]

    Chikoidze E, Dumont Y, Von Bardeleben H J, Gleize J, Jomard F, Rzepka E, Berrerar G, Ferrand D, Gorochov O 2007 Appl. Phys. A 88 167

    [4]

    McCarty A D, Hassan A K, Brunel L C, Dziatkowski K, Furdyna J K 2005 Phys. Rev. Lett. 95 157201

    [5]

    Yang Z Y 2009 Chin. Phys. B 18 1253

    [6]

    Yang L, Yin C H, Jiao Y, Zhang L, Song N, Ru R P 2006 Acta Phys. Sin. 55 1991 (in Chinese) [杨 柳、 殷春浩、 焦 扬、 张 雷、 宋 宁、 茹瑞鹏 2006 物理学报 55 1991]

    [7]

    Rudowicz C, Gnutek P 2009 Physica B 404 3582

    [8]

    Yang Z Y , Hao Y 2005 Acta Phys. Sin. 54 2883 (in Chinese)[杨子元、 郝 跃 2005 物理学报 54 2883]

    [9]

    Yang Z Y 2010 Spectrochimica Acta Part A 75 277

    [10]

    Qi L, Kuang X Y, Chai R P, Duan M L, Zhang C X 2009 Chin. Phys. B 18 1586

    [11]

    Lu H P, Yin C H, Wei X S, Niu Y X, Song N, Ru R P 2007 Acta Phys. Sin. 56 6608 (in Chinese) [吕海萍、 殷春浩、 魏雪松、 钮应喜、 宋 宁、 茹瑞鹏 2007 物理学报 56 6608]

    [12]

    Blume M, Orbach R 1962 Phys. Rev. 127 1587

    [13]

    Macfarlane R M 1967 J. Chem. Phys. 47 2066

    [14]

    Yu W L, Wang J Z 1993 Phys. Stat. Sol. 176 433

    [15]

    Febbraro S 1987 J. Phys. C 20 5367

    [16]

    Wang J Z, Yu W L, Fang K 1991 Phys. Rev. B 43 2575

    [17]

    Barnes J A, Carroll B L, Flores L M, Hedges R M 1970 Atomic Data 2 1

    [18]

    Blume M, Watson R E 1963 Proc. Roy. Soc. (London)A 271 565

    [19]

    Blume M, Watson R E 1962 Proc. Roy. Soc. (London)A 270 127

    [20]

    Marvin H H 1947 Phys. Rev. 71 102

    [21]

    Yang Z Y 2007 J. Lum. 126 753

    [22]

    Bramley R, Strach S J 1983 Chem. Rev. 83 49

    [23]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford 1986; Dover, New York)

    [24]

    Rudowicz C and Misra S K 2001 Appl. Spectr. Rev. 36 11

    [25]

    Gnutek P, Yang Z Y, Rudowicz C 2009 J. Phys.: Condens. Matter 21 455402

    [26]

    Lee S, Brodbeck C M, Yang C C 1977 Phys. Rev. B15 2469

    [27]

    Diaconu M, Schmidt H, Pppl A, Bttcher R, Hoentsch J, Klunker A, Spemann D, Hochmuth H, Lorenz M and Grundmann M 2005 Phys. Rev. B 72 085214

    [28]

    Yang Z Y, Hao Y, Rudowicz C, Yeung Y Y 2004 J. Phys.: Condens. Matter 16 3481

    [29]

    Rudowicz C, Yang Z Y, Yeung Y Y, Qin J 2003 J. Chem. Phys. Solids 64 1419

    [30]

    Yeung Y Y, Rudowicz C 1992 Computers Chem. 16 207

    [31]

    Yeung Y Y, Rudowicz C 1993 J. Computational Phys. 109 150

    [32]

    Wybourne B G 1965 Spectroscopic Properties of Rare Earths, John Wiley & Sons, Inc. New York

    [33]

    Powell M J D, Gabriel J R, Johnston D F 1960 Phys. Rev. Lett. 5 145

    [34]

    Fraga S, Karwowski J, Saxena K M S 1976 Handbook of Atomic Data, Elsevier, Amsterdam

    [35]

    Yu W L and Wang J Z 1992 Chinese Science Bulletin 37 1840 (in Chinese)[余万伦、王俊忠1992 科学通报 37 1840]

    [36]

    Zhao M G, Chin M 1995 Phys. Rev. B 52 10043

    [37]

    Lei Y 2001 Mater. Science and Engineer. B 86 206

  • [1] 赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰. 广义布洛赫条件下二维晶格的磁交换作用. 物理学报, 2022, 71(1): 017105. doi: 10.7498/aps.71.20211317
    [2] 赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰. 广义布洛赫条件下二维晶格的磁交换作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211317
    [3] 谭晓明, 赵刚, 张迪. BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响. 物理学报, 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [4] 杨子元. 掺杂晶体材料ZnGa2O4:Fe3+局域结构畸变及其微观自旋哈密顿参量研究. 物理学报, 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [5] 卢成, 王丽, 卢志文, 宋海珍, 李根全. ZnS:Cr2+中局域晶格结构和自旋单态对零场分裂参量的贡献. 物理学报, 2011, 60(8): 087601. doi: 10.7498/aps.60.087601
    [6] 魏群. 三角对称下3d3离子2E态g因子性质研究. 物理学报, 2009, 58(5): 3485-3490. doi: 10.7498/aps.58.3485
    [7] 杨子元. 立方对称晶场中6S(3d5)态离子的磁相互作用及其自旋哈密顿参量的微观起源. 物理学报, 2008, 57(7): 4512-4520. doi: 10.7498/aps.57.4512
    [8] 吕海萍, 殷春浩, 魏雪松, 钮应喜, 宋 宁, 茹瑞鹏. LiNbO3∶Fe3+晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [9] 黄书文, 刘 涛, 范云霞, 汪克林. 载流子与铁磁物质耦合系统的严格对角化解与相干态变分方法. 物理学报, 2007, 56(1): 491-499. doi: 10.7498/aps.56.491
    [10] 魏 群, 杨子元, 王参军, 许启明. Al2O3:V3+晶体局域结构及其自旋哈密顿参量研究. 物理学报, 2007, 56(4): 2393-2398. doi: 10.7498/aps.56.2393
    [11] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [12] 殷春浩, 焦 杨, 宋 宁, 茹瑞鹏, 杨 柳, 张 雷. 掺入Mg2+对CsNiCl3晶体的基态能级、零场分裂参量及Jahn-Teller效应的影响. 物理学报, 2006, 55(10): 5471-5478. doi: 10.7498/aps.55.5471
    [13] 殷春浩, 焦 杨, 张 雷, 宋 宁, 茹瑞鹏, 杨 柳. CsNiCl3晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [14] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [15] 杨子元, 郝 跃. 四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究. 物理学报, 2005, 54(6): 2883-2892. doi: 10.7498/aps.54.2883
    [16] 戴耀东, 何 云, 黄红波, 邵 挺, 夏元复. 嵌入化合物Fe0.95PS3(MV)0.11的合成与磁性能研究. 物理学报, 2003, 52(12): 3020-3026. doi: 10.7498/aps.52.3020
    [17] 蒋德琼, 李敏惠, 余万伦. 氟钙钛矿AMF3:Fe3+晶体中Fe3+离子的零场分裂参量及晶格缺陷研究. 物理学报, 1997, 46(8): 1625-1630. doi: 10.7498/aps.46.1625
    [18] 周一阳. 自旋三重态对3d~4/3d~6离子零场分裂参量的影响. 物理学报, 1995, 44(1): 122-127. doi: 10.7498/aps.44.122
    [19] 杨桂林, 段明谦, 徐游, 翟宏如. 低对称性晶场中3d5离子零场劈裂常数的计算. 物理学报, 1984, 33(1): 110-115. doi: 10.7498/aps.33.110
    [20] 楼祺洪, 黄武汉. 自旋—自旋相互作用对红宝石基态零场分裂的贡献. 物理学报, 1965, 21(12): 1962-1967. doi: 10.7498/aps.21.1962
计量
  • 文章访问数:  5417
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-06
  • 修回日期:  2010-06-09
  • 刊出日期:  2011-03-15

三角对称晶场中6 S(3d5)态离子零场分裂参量的微观起源

  • 1. 宝鸡文理学院物理与信息技术系,宝鸡 721007
    基金项目: 陕西省自然科学基金(批准号:2010JM1015)及宝鸡文理学院重点科研基金(批准号:ZK0842)资助的课题.

摘要: 基于完全对角化方法(complete diagonalization method, CDM), 研究了6 S(3d5)态离子在三角晶场(包括C3v,D3,D3d点群对称晶场)中零场分裂(zero-field splitting, ZFS)参量D和(a-F)的微观起源.研究中除了考虑研究者通常考虑的SO(spin-orbit)磁相互作用外,同

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回