搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiN多型体高压相变的第一性原理计算

顾雄 高尚鹏

引用本文:
Citation:

TiN多型体高压相变的第一性原理计算

顾雄, 高尚鹏

Ab initio calculation of pressure-induced phase transition of TiN polytypes

Gu Xiong, Gao Shang-Peng
PDF
导出引用
  • 基于密度泛函理论框架下的赝势平面波方法,计算了B1(氯化钠结构)、B2(氯化铯结构)、B3(闪锌矿结构)、Bk(六方氮化硼结构)、Bh(碳化钨结构)和B81(砷化镍结构)6种TiN多型体的晶体结构、体积弹性模量和相对稳定性.计算指出,不存在B4(纤锌矿)结构的TiN.通过不同外压下的晶格弛豫得到每种结构的焓,发现外压
    Based on a plane wave pseudopotential method within the framework of density functional theory, equilibrium structure, bulk modulus, and relative stability were calculated for 6 kinds of TiN polytypes including B1 (NaCl structure), B2 (CsCl structure), B3 (zincblende structure), Bk (hexagonal BN structure), Bh (WC structure) and B81 (NiAs structure). Theoretical calculation also showed that TiN can not exist in B4 (wurtizite) structure. Through geometry optimization under hydrostatic pressure, the enthalpy of each TiN phase at different pressures was obtained. It was found that TiN with B1 structure is the most stable phase at pressure lower than about 345 GPa, whereas B2 TiN is the most stable at pressure above 345 GPa. Volume discontinuity and bulk modulus change can be observed during the transition from B1 to B2 phase.
    • 基金项目: 国家自然科学基金(批准号:10804018)和教育部留学回国人员科研启动基金资助的课题.
    [1]

    Schwarz K 1987 Crit. Rev. Solid State Mater. Sci. 13 211

    [2]

    Rickerby D S, Burnett P J 1987 Surf. Coat. Technol. 33 191

    [3]

    Valvoda V 1996 Surf. Coat. Technol. 80 61

    [4]

    Yan P X, Wu Z G, Xu J W, Zhang Y J, Li X, Zhang W W 2004 J. Synth. Cryst. 33 974(in Chinese)[闫鹏勋、吴志国、徐建伟、张玉娟、李 鑫、张伟伟 2004 人工晶体学报 33 974]

    [5]

    Pickard C J, Needs R J 2010 Nat. Mater. 9 624

    [6]

    Silas P, Yates J R, Haynes P D 2008 Phys. Rev. B 78 174101

    [7]

    Yu R, Zhan Q, De Jonghe L C 2007 Angew Chem. Int. Edit 46 1136

    [8]

    Alptekin S, Durandurdu M 2009 Solid State Commun. 149 345

    [9]

    Ma X G, Liang P, Miao L, Bie S W, Zhang C K, Xu L, Jiang J J 2009 Phys. Status Solidi B 246 2132

    [10]

    Guan P F, Wang C Y, Yu T 2008 Chin. Phys. B 17 3040

    [11]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [12]

    Feng H J, Liu F M 2009 Chin. Phys. B 18 1574

    [13]

    Tan L N, Hu C E, Yu B R, Chen X R 2007 Chin. Phys. 16 3772

    [14]

    Chen D, Chen J D, Zhao L H, Wang C L, Yu B H, Shi D H 2009 Chin. Phys. B 18 0738

    [15]

    Ji Z H, Zeng X H, Hu Y J, Tan M Q 2008 Acta Phys. Sin. 57 3753 (in Chinese) [季正华、曾祥华、胡永金、谭明秋 2008 物理学报 57 3753]

    [16]

    Ji G F, Zhang Y L, Cui H L, Li X F, Zhao F, Meng C M, Song Z F 2009 Acta Phys. Sin. 58 4103 (in Chinese) [姬广福、张艳 丽、崔红玲、李晓凤、赵 峰、孟川民、宋振飞 2009 物理学报 58 4103] [17] Lü M Y, Chen Z W, Li L X, Liu R P, Wang W K 2006 Acta Phys. Sin.55 3576 (in Chinese)[吕梦雅、陈洲文、李立新、刘日平、王文魁 2006 物理学报 55 3576]

    [17]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [18]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [19]

    Liu L M, Wang S Q, Ye H Q 2005 J. Phys.: Condens. Matter. 17 5335

    [20]

    Wang A J, Shang S L, Du Y, Kong Y, Zhang L J, Chen L, Zhao D D, Liu Z K 2010 Comput. Mater. Sci. 48 705

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 133

    [24]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Schöenberg N 1954 Acta Chem. Scand. 8 213

    [27]

    Guo Z T, Peng F, Chen H H 2010 J. Southwest Univ. National. (Nat. Sci. Edit.) 36 145[郭振堂、彭 放、陈海花 2010 西南民族大学学报(自然科学版)36 145]

    [28]

    Chen H H, Peng F, Mao H K, Shen G Y, Liermann H P, Li Z, Shu J F 2010 J. Appl. Phys. 107 113503

    [29]

    Jeanloz R, Ahrens T, Mao H K, Bell P M 1979 Science 206 829

    [30]

    Sato Y, Jeanloz R 1981 J. Geophys. Res. 86 B 11773

    [31]

    Liu H, Mao H, Maddury M, Ding Y, Meng Y, Höusermann D 2004 Phys. Rev. B 70 094114

    [32]

    Alfè D, Alfredsson M, Brodholt J, Gillan M J, Towler M D, Needs R J 2005 Phys. Rev. B 72 014114

    [33]

    Murakami M, Hirose K, Ono S, Tsuchiya T, Isshiki M, Watanuki T 2004 Phys. Earth. Planet. Inter. 146 273

  • [1]

    Schwarz K 1987 Crit. Rev. Solid State Mater. Sci. 13 211

    [2]

    Rickerby D S, Burnett P J 1987 Surf. Coat. Technol. 33 191

    [3]

    Valvoda V 1996 Surf. Coat. Technol. 80 61

    [4]

    Yan P X, Wu Z G, Xu J W, Zhang Y J, Li X, Zhang W W 2004 J. Synth. Cryst. 33 974(in Chinese)[闫鹏勋、吴志国、徐建伟、张玉娟、李 鑫、张伟伟 2004 人工晶体学报 33 974]

    [5]

    Pickard C J, Needs R J 2010 Nat. Mater. 9 624

    [6]

    Silas P, Yates J R, Haynes P D 2008 Phys. Rev. B 78 174101

    [7]

    Yu R, Zhan Q, De Jonghe L C 2007 Angew Chem. Int. Edit 46 1136

    [8]

    Alptekin S, Durandurdu M 2009 Solid State Commun. 149 345

    [9]

    Ma X G, Liang P, Miao L, Bie S W, Zhang C K, Xu L, Jiang J J 2009 Phys. Status Solidi B 246 2132

    [10]

    Guan P F, Wang C Y, Yu T 2008 Chin. Phys. B 17 3040

    [11]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [12]

    Feng H J, Liu F M 2009 Chin. Phys. B 18 1574

    [13]

    Tan L N, Hu C E, Yu B R, Chen X R 2007 Chin. Phys. 16 3772

    [14]

    Chen D, Chen J D, Zhao L H, Wang C L, Yu B H, Shi D H 2009 Chin. Phys. B 18 0738

    [15]

    Ji Z H, Zeng X H, Hu Y J, Tan M Q 2008 Acta Phys. Sin. 57 3753 (in Chinese) [季正华、曾祥华、胡永金、谭明秋 2008 物理学报 57 3753]

    [16]

    Ji G F, Zhang Y L, Cui H L, Li X F, Zhao F, Meng C M, Song Z F 2009 Acta Phys. Sin. 58 4103 (in Chinese) [姬广福、张艳 丽、崔红玲、李晓凤、赵 峰、孟川民、宋振飞 2009 物理学报 58 4103] [17] Lü M Y, Chen Z W, Li L X, Liu R P, Wang W K 2006 Acta Phys. Sin.55 3576 (in Chinese)[吕梦雅、陈洲文、李立新、刘日平、王文魁 2006 物理学报 55 3576]

    [17]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [18]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [19]

    Liu L M, Wang S Q, Ye H Q 2005 J. Phys.: Condens. Matter. 17 5335

    [20]

    Wang A J, Shang S L, Du Y, Kong Y, Zhang L J, Chen L, Zhao D D, Liu Z K 2010 Comput. Mater. Sci. 48 705

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 133

    [24]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Schöenberg N 1954 Acta Chem. Scand. 8 213

    [27]

    Guo Z T, Peng F, Chen H H 2010 J. Southwest Univ. National. (Nat. Sci. Edit.) 36 145[郭振堂、彭 放、陈海花 2010 西南民族大学学报(自然科学版)36 145]

    [28]

    Chen H H, Peng F, Mao H K, Shen G Y, Liermann H P, Li Z, Shu J F 2010 J. Appl. Phys. 107 113503

    [29]

    Jeanloz R, Ahrens T, Mao H K, Bell P M 1979 Science 206 829

    [30]

    Sato Y, Jeanloz R 1981 J. Geophys. Res. 86 B 11773

    [31]

    Liu H, Mao H, Maddury M, Ding Y, Meng Y, Höusermann D 2004 Phys. Rev. B 70 094114

    [32]

    Alfè D, Alfredsson M, Brodholt J, Gillan M J, Towler M D, Needs R J 2005 Phys. Rev. B 72 014114

    [33]

    Murakami M, Hirose K, Ono S, Tsuchiya T, Isshiki M, Watanuki T 2004 Phys. Earth. Planet. Inter. 146 273

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [6] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [10] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [11] 原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦. BeO高压相变和声子谱的第一性原理计算. 物理学报, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [12] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [13] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [14] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [15] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [16] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [17] 靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮. Mg掺杂ZnO所致的禁带宽度增大现象研究. 物理学报, 2006, 55(9): 4809-4815. doi: 10.7498/aps.55.4809
    [18] 吕梦雅, 陈洲文, 李立新, 刘日平, 王文魁. 3C-SiC高压相变的理论研究. 物理学报, 2006, 55(7): 3576-3580. doi: 10.7498/aps.55.3576
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 张 勇, 唐超群, 戴 君. 锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验. 物理学报, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
计量
  • 文章访问数:  7832
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2010-09-03
  • 刊出日期:  2011-05-15

/

返回文章
返回