x

留言板

 引用本文:
 Citation:

An investigation into the expression of potential vorticity in the common meteorological coordinate systems

Liu Shi-Jun, Wang Xiu-Ming, Tao Zu-Yu, Zhou Xiao-Gang
PDF
• 摘要

气象常用垂直坐标系中的位涡方程及位涡形式是位涡理论及位涡诊断技术的基础.本文依据坐标转换的观点,分别用两种不同的方法推导出等压坐标和等熵坐标中的位涡方程及相应的位涡表达式.一是从三维矢量运动方程出发,由三维涡度方程、连续方程和热力学方程推导位涡方程;二是直接从等压坐标和等熵坐标中的标量运动方程组出发推导位涡方程.结果表明,用两种方法所得到的等压坐标中的位涡方程和位涡表达式形式有所不同,而等熵坐标中用两种方法所得到的位涡方程和位涡形式相同.对垂直坐标系的物理本质分析表明,采用第一种方法时尽管矢量运动方程中的

Abstract

The potential vorticity theory and diagnostic techniques are based on the potential vorticity equation and expression in the common meteorological coordinate systems. In this paper, the potential vorticity equation and expression in the isobaric and isoentropic coordinates are gotten via coordinate transformation with the two methods. First, starting from the three-dimensional vector motion equation, the potential vorticity equations and expressions are gotten by the combination of the three-dimensional vorticity equation, continuity equation, and thermodynamic equation. Second, the potential vorticity equations and expressions are directly gotten from the corresponding scalar motion equations in the isobaric and isoentropic coordinates. The results show that potential vorticity expression is different with one method from that with the other in the isobaric coordinate system, and it is the same as each other in the isoentropic coordinate system. It was found, based on further analysis of the physical nature of the coordinates, that the isobaric and isoentropic coordinates are essentially treated as a mathematical coordinate system with the first method despite the coordinate transformation made for the term of pressure gradient force in the vector motion equation. From the procedure for the second method it is clearly seen that the isobaric and isoentropic coordinate systems are the physical coordinate system under the assumption of static equilibrium, which are not simply used as a mathematical coordinate system. As far as the isobaric coordinate is concerned, only the potential vorticity equation obtained from the scalar motion equations is the strict potential vorticity equation. As for the isoentropic coordinate, owing to the potential temperature gradient perpendicular to the isoentropic plane, the potential vorticity equation and expression are the same regardless of the coordinate being viewed as the physical or the mathematical.

作者及机构信息

(1)北京大学物理学院,北京 100871; (2)中国气象局培训中心,北京 100081
• 基金项目: 国家自然科学基金(批准号:40875029, 40745032),2009年气象行业专项 (批准号: GYHY200906003)资助的课题.

参考文献

 [1] Cai Q F, Huang S X, Gao S T, Zhong K, Li Z Q 2008 Acta Phys. Sin. 57 3912 (in Chinese)[蔡其发、黄思训、高守亭、钟 科、李自强 2008 物理学报 57 3912] [2] Wu G X 2001 Acta Meteor. Sin. 59 385 (in Chinese)[吴国雄 2001 气象学报 59 385] [3] Zhou Y S, Ran L K 2010 Acta Phys. Sin. 59 1366 (in Chinese)[周玉淑、冉令坤 2010 物理学报 59 1366] [4] Cao J, Gao S T, Zhou Y S 2008 Acta Phys. Sin. 57 2600 (in Chinese)[曹 洁、高守亭、周玉淑 2008 物理学报 57 2600] [5] Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese)[周玉淑、曹 洁、高守亭 2008 物理学报 57 6654] [6] Tao J J, Li C K 2009 Acta Phys. Sin. 58 4313 (in Chinese)[陶建军、李朝奎 2009 物理学报 58 4313] [7] Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3022 (in Chinese)[黄思训、蔡其发、项 杰、张 铭 2007 物理学报 56 3022] [8] Ertel H 1942 Met.Z. 59 271 [9] Hoskins B J, McIntyre M E, Robertson A W 1985 Quart. J. Roy.Meteor. Soc. 111 877 [10] Wu G X, Cai Y P, Tang X J 1995 Acta Meteor. Sin. 53 387 (in Chinese)[吴国雄、蔡雅萍、唐晓菁 1995 气象学报 53 387] [11] Liu X Q,Wang T M,Wu B J,Hu S C,Chen Q J 1994 Chin. J. Atmos. Sci. 18 570 (in Chinese)[留小强、王田民、吴宝俊、胡圣昌、陈乾金 1994 大气科学 18 570] [12] Liu H Z, Zhang S Q 1996 J. Appl. Meteor. Sci. 7 275 (in Chinese)[刘还珠、张绍晴 1996 应用气象学报 7 275] [13] Gao S T, Lei T, Zhou Y S, Dong M 2002 J. Appl. Meteor. Sci. 13 662 (in Chinese)[高守亭、雷 霆、周玉淑、董 敏 2002 应用气象学报 13 662] [14] Schubert W H, Hausman S A, Garcia M, Ooyama K V, Kuo H C 2001 J. Atmos. Sci. 57 3148 [15] Zhang W, Tao Z Y, Hu Y Y, Wang H Q, Huang W 2006 Acta Sci. Natura. Uni. Pek. 42 61 (in Chinese)[张 伟、陶祖钰、胡永云、王洪庆、黄 炜 2006 北京大学学报(自然科学版) 42 61] [16] Yu Y B, Yao X P 2003 Acta Meteor. Sin. 61 769 (in Chinese)[于玉斌、姚秀萍 2003 气象学报 61 769] [17] Yao X P, Peng G, Yu Y B 2009 Plateau Meteor. 28 507 (in Chinese)[姚秀萍、彭 广、于玉斌 2009 高原气象 28 507] [18] Wang T H, Yang S 2009 Acta Meteor. Sin. 67 522 (in Chinese)[王东海、杨 帅 2009 气象学报 67 522] [19] Browning K A 1997 Meteor. Appl. 4 317 [20] Browning K A, Roberts N M 1996 Quart J. Roy. Meteor. Soc.122 1845 [21] Davis C A 1992 J Atmos. Sci. 49 1397 [22] Zhang S W, Wang S G 2001 Plateau Meteor. 20 468 (in Chinese)[张述文、王式功 2001 高原气象 20 468] [23] Zhao B K, Liu Y M, Liang P 2008 Plateau Meteor. 27 158 (in Chinese) [赵兵科、刘屹岷、梁 萍 2008 高原气象 27 158] [24] Hu Y J, Zhong Z, Min J Z 2008 Chin. J. Atmos. Sci. 32 90 (in Chinese)[胡轶佳、钟 中、闵锦忠 2008 大气科学 32 90] [25] Liu Y, Liu C J, Xu H, Zhao Y M 2006 Plateau Meteor. 25 651 (in Chinese)[刘 英、柳崇健、徐 辉、赵永明 2006 高原气象 25 651] [26] Yan H M, Ren J Z, Duan W 2006 J. Nanjing Inst. Meteor. 29 491 (in Chinese) [晏红明、任菊章、段 玮 2006 南京气象学院学报 29 491] [27] Brennan M J,Lackmann G M, Mahoney K M 2008 Wea. Forecasting 23 168 [28] Hu B W 2003 J. Nanjing Inst. Meteor. 26 111 (in Chinese)[胡伯威 2003 南京气象学院学报 26 111] [29] Yuan Z J 1999 Chin. J. Atmos. Sci. 23 199 (in Chinese)[袁卓建 1999 大气科学 23 199] [30] Ding Y H 1989 Diagnosis method of weather dynamics(Beijing: Science Press)p178 (in Chinese)[丁一汇 1989 天气动力学中的诊断分析方法(北京:科学出版社)第178页] [31] Zhao G X, Cheng L S, Li X S 2007 Plateau Meteor. 26 615 (in Chinese)[赵桂香、程麟生、李新生 2007 高原气象 26 615] [32] Wu R S 2002 Atmospheric dynamics (Beijing: Higher Education Press ) p44 (in Chinese)[伍荣生 2002 大气动力学(北京:高等教育出版社) 第44页] [33] Lu M Z, Peng Y Q 1990 Dynamic meteorology tutorial (Beijing: China Meteorological Press) p132 (in Chinese)[吕美仲、彭永清1990 动力气象学教程(北京:气象出版社)第132页] [34] Yang D S, Liu Y B, Liu S K 1980 Dynamic meteorology (Beijing: China Meteorological Press) p119 (in Chinese)[杨大 升、刘余滨、刘式适 1980 动力气象学(北京:气象出版社)第119页]

施引文献

•  [1] Cai Q F, Huang S X, Gao S T, Zhong K, Li Z Q 2008 Acta Phys. Sin. 57 3912 (in Chinese)[蔡其发、黄思训、高守亭、钟 科、李自强 2008 物理学报 57 3912] [2] Wu G X 2001 Acta Meteor. Sin. 59 385 (in Chinese)[吴国雄 2001 气象学报 59 385] [3] Zhou Y S, Ran L K 2010 Acta Phys. Sin. 59 1366 (in Chinese)[周玉淑、冉令坤 2010 物理学报 59 1366] [4] Cao J, Gao S T, Zhou Y S 2008 Acta Phys. Sin. 57 2600 (in Chinese)[曹 洁、高守亭、周玉淑 2008 物理学报 57 2600] [5] Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese)[周玉淑、曹 洁、高守亭 2008 物理学报 57 6654] [6] Tao J J, Li C K 2009 Acta Phys. Sin. 58 4313 (in Chinese)[陶建军、李朝奎 2009 物理学报 58 4313] [7] Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3022 (in Chinese)[黄思训、蔡其发、项 杰、张 铭 2007 物理学报 56 3022] [8] Ertel H 1942 Met.Z. 59 271 [9] Hoskins B J, McIntyre M E, Robertson A W 1985 Quart. J. Roy.Meteor. Soc. 111 877 [10] Wu G X, Cai Y P, Tang X J 1995 Acta Meteor. Sin. 53 387 (in Chinese)[吴国雄、蔡雅萍、唐晓菁 1995 气象学报 53 387] [11] Liu X Q,Wang T M,Wu B J,Hu S C,Chen Q J 1994 Chin. J. Atmos. Sci. 18 570 (in Chinese)[留小强、王田民、吴宝俊、胡圣昌、陈乾金 1994 大气科学 18 570] [12] Liu H Z, Zhang S Q 1996 J. Appl. Meteor. Sci. 7 275 (in Chinese)[刘还珠、张绍晴 1996 应用气象学报 7 275] [13] Gao S T, Lei T, Zhou Y S, Dong M 2002 J. Appl. Meteor. Sci. 13 662 (in Chinese)[高守亭、雷 霆、周玉淑、董 敏 2002 应用气象学报 13 662] [14] Schubert W H, Hausman S A, Garcia M, Ooyama K V, Kuo H C 2001 J. Atmos. Sci. 57 3148 [15] Zhang W, Tao Z Y, Hu Y Y, Wang H Q, Huang W 2006 Acta Sci. Natura. Uni. Pek. 42 61 (in Chinese)[张 伟、陶祖钰、胡永云、王洪庆、黄 炜 2006 北京大学学报(自然科学版) 42 61] [16] Yu Y B, Yao X P 2003 Acta Meteor. Sin. 61 769 (in Chinese)[于玉斌、姚秀萍 2003 气象学报 61 769] [17] Yao X P, Peng G, Yu Y B 2009 Plateau Meteor. 28 507 (in Chinese)[姚秀萍、彭 广、于玉斌 2009 高原气象 28 507] [18] Wang T H, Yang S 2009 Acta Meteor. Sin. 67 522 (in Chinese)[王东海、杨 帅 2009 气象学报 67 522] [19] Browning K A 1997 Meteor. Appl. 4 317 [20] Browning K A, Roberts N M 1996 Quart J. Roy. Meteor. Soc.122 1845 [21] Davis C A 1992 J Atmos. Sci. 49 1397 [22] Zhang S W, Wang S G 2001 Plateau Meteor. 20 468 (in Chinese)[张述文、王式功 2001 高原气象 20 468] [23] Zhao B K, Liu Y M, Liang P 2008 Plateau Meteor. 27 158 (in Chinese) [赵兵科、刘屹岷、梁 萍 2008 高原气象 27 158] [24] Hu Y J, Zhong Z, Min J Z 2008 Chin. J. Atmos. Sci. 32 90 (in Chinese)[胡轶佳、钟 中、闵锦忠 2008 大气科学 32 90] [25] Liu Y, Liu C J, Xu H, Zhao Y M 2006 Plateau Meteor. 25 651 (in Chinese)[刘 英、柳崇健、徐 辉、赵永明 2006 高原气象 25 651] [26] Yan H M, Ren J Z, Duan W 2006 J. Nanjing Inst. Meteor. 29 491 (in Chinese) [晏红明、任菊章、段 玮 2006 南京气象学院学报 29 491] [27] Brennan M J,Lackmann G M, Mahoney K M 2008 Wea. Forecasting 23 168 [28] Hu B W 2003 J. Nanjing Inst. Meteor. 26 111 (in Chinese)[胡伯威 2003 南京气象学院学报 26 111] [29] Yuan Z J 1999 Chin. J. Atmos. Sci. 23 199 (in Chinese)[袁卓建 1999 大气科学 23 199] [30] Ding Y H 1989 Diagnosis method of weather dynamics(Beijing: Science Press)p178 (in Chinese)[丁一汇 1989 天气动力学中的诊断分析方法(北京:科学出版社)第178页] [31] Zhao G X, Cheng L S, Li X S 2007 Plateau Meteor. 26 615 (in Chinese)[赵桂香、程麟生、李新生 2007 高原气象 26 615] [32] Wu R S 2002 Atmospheric dynamics (Beijing: Higher Education Press ) p44 (in Chinese)[伍荣生 2002 大气动力学(北京:高等教育出版社) 第44页] [33] Lu M Z, Peng Y Q 1990 Dynamic meteorology tutorial (Beijing: China Meteorological Press) p132 (in Chinese)[吕美仲、彭永清1990 动力气象学教程(北京:气象出版社)第132页] [34] Yang D S, Liu Y B, Liu S K 1980 Dynamic meteorology (Beijing: China Meteorological Press) p119 (in Chinese)[杨大 升、刘余滨、刘式适 1980 动力气象学(北京:气象出版社)第119页]
•  [1] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法. 物理学报, 2013, 62(7): 070201. doi: 10.7498/aps.62.070201 [2] 余海军, 钟国宝, 马建国, 任刚. 基于坐标表象的脊波变换研究. 物理学报, 2013, 62(13): 134205. doi: 10.7498/aps.62.134205 [3] 鹿鹏举, 赵峥, 刘文彪. 从乌龟坐标在动态Vaidya黑洞上的推广谈起. 物理学报, 2012, 61(5): 050401. doi: 10.7498/aps.61.050401 [4] 谢志堃. 用新乌龟坐标变换研究动态Kerr黑洞的Hawking辐射. 物理学报, 2011, 60(9): 090403. doi: 10.7498/aps.60.090403 [5] 潘伟珍, 杨学军, 骆金彩. 新乌龟坐标变换下的动态Kinnersley黑洞的Hawking辐射. 物理学报, 2011, 60(10): 109701. doi: 10.7498/aps.60.109701 [6] 徐世民, 李洪奇, 王继锁, 徐兴磊. 双模坐标-动量积分型投影算符及其在量子光学中的应用. 物理学报, 2009, 58(4): 2174-2178. doi: 10.7498/aps.58.2174 [7] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459 [8] 李体俊. 坐标算符本征矢的表示与不对称投影算符的积分. 物理学报, 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969 [9] 徐世民, 蒋继建, 李洪奇, 徐兴磊. 两体组合坐标表象的建立、性质及应用. 物理学报, 2008, 57(12): 7430-7437. doi: 10.7498/aps.57.7430 [10] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理. 物理学报, 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241 [11] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862 [12] 肖 刘, 苏小保, 刘濮鲲. 带状螺旋线研究中的坐标变换. 物理学报, 2006, 55(5): 2152-2157. doi: 10.7498/aps.55.2152 [13] 牛振风, 刘文彪. 新Tortoise坐标变换与任意加速带电动态黑洞熵. 物理学报, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475 [14] 黎忠恒, 赵峥. 广义Tortoise坐标变换与Hawking过程. 物理学报, 1997, 46(7): 1273-1281. doi: 10.7498/aps.46.1273 [15] 赵峥, 刘辽. Hawking效应是坐标尺度变换下的补偿效应. 物理学报, 1993, 42(9): 1537-1542. doi: 10.7498/aps.42.1537 [16] 刘全慧. 笛卡儿坐标下空间转子体系的双波函数描述. 物理学报, 1993, 42(4): 522-527. doi: 10.7498/aps.42.522 [17] 赵峥. 导致Hawking效应的普遍坐标变换. 物理学报, 1990, 39(11): 1854-1862. doi: 10.7498/aps.39.1854 [18] 李先枢. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅰ)——自洽场矩阵方程. 物理学报, 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990 [19] 李先枢. 平面屏系统中标量光波传播的矩阵理论(柱坐标). 物理学报, 1981, 30(10): 1325-1339. doi: 10.7498/aps.30.1325 [20] 潘少华. 光学坐标变换系统的理论设计. 物理学报, 1981, 30(4): 514-519. doi: 10.7498/aps.30.514
• 文章访问数:  7617
• PDF下载量:  973
• 被引次数: 0
出版历程
• 收稿日期:  2010-07-20
• 修回日期:  2010-08-30
• 刊出日期:  2011-05-15

/