搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体心立方Ta的广义面错能及在Ⅱ型裂纹尖端初始塑性研究中的应用

梅继法 黎军顽 倪玉山 王华滔

引用本文:
Citation:

体心立方Ta的广义面错能及在Ⅱ型裂纹尖端初始塑性研究中的应用

梅继法, 黎军顽, 倪玉山, 王华滔

Generalized planar fault energy of body-centered cubic Ta andits application to plastic deformation of mode Ⅱ crack tip

Mei Ji-Fa, Li Jun-Wan, Ni Yu-Shan, Wang Hua-Tao
PDF
导出引用
  • 基于嵌入原子势考察体心立方(bcc)金属Ta的广义层错能和广义孪晶能并获得广义层错能和广义孪晶能曲线. 研究表明,bcc Ta的广义层错能曲线与面心立方金属的广义层错能曲线有明显差异,Ta的广义层错能曲线不存在明显的能量极小值,位错主要以全位错的形式发射. 不同原子厚度的广义孪晶能曲线表明4个原子层的孪晶能曲线开始出现亚稳定的能量极小值,5个原子层的孪晶能曲线出现稳定的能量极小值. 为进一步验证广义层错能和广义孪晶能曲线揭示的塑性变形机理,采用准连续介质力学多尺度方法研究Ⅱ型裂纹尖端的初始塑性变形过程.
    The generalized planar fault energy, including the generalized stacking fault (GSF) and the generalized twinning fault energy (GTF) of body-centered cubic metal Ta are investigated based on the embedded atom potential. The GSF of Ta, much different from that of fcc metal, reveals that no evident energy minimum is observed in the energy curve. This implies that only full dislocations are possibly emitted in the {112} slip plane. From the GTF it is predicted that the minimum thickness of a metastable twin is as large as four layers and the five-layer twin is more stable. The incipient twin Ta tends to grow thicker once it is created. To confirm the significance of the GSF and GTF in revealing incipient plasticity, quasicontinuum method is used to simulate the mode Ⅱ crack of single Ta crystal. The results show that deformation twin and full dislocation along direction in {112} plane are two co-existing mechanisms of crack tip plastic deformation. The initial four-layer twin quickly extends into five-layer and more-layer twins with further loading. A full dislocation is emitted into the front of the crack tip in {112} plane. These two plastic deformation mechanisms are well explained by the GTF and the GSF respectively.
    • 基金项目: 国家自然科学基金(批准号:10576010) 资助的课题.
    [1]

    Komura S, Horita Z, Nemoto M, Langdon T G 1999 J. Mater. Res. 14 4044

    [2]

    Hoshino T, Kumamoto K, Kokubun K, Ishimaru T 1995 Phys. Rev. B 51 14594

    [3]

    Thornton P R, Hirsch P B 1958 Phil. Mag. 3 738

    [4]

    Rohatgi A, Vecchio K S, Gray G T 2001 Metall. Mater. Trans. A 32 135

    [5]

    Howie A, Swann P R 1961 Phil. Mag. 6 1215

    [6]

    Cockayne D J H, Jenkins M L, Ray I L F 1971 Phil. Mag. 192 1383

    [7]

    Schweizer S, Elssser C, Hummler K, Fhnle M 1992 Phys. Rev. B 46 14270

    [8]

    Ferreira P J, Müllner P 1998 Acta Mater. 46 4479

    [9]

    Rice J R 1992 J. Mech. Phys. Solids 40 239

    [10]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [11]

    Van Swygenhoven H, Derlet P M, Frseth A G 2004 Nat. Mater. 3 399

    [12]

    Frseth A G, Derlet P M, Van Swygenhoven H 2004 Appl. Phys. Lett. 85 5863

    [13]

    Zimmerman J A, Gao H, Abraham F F 2000 Model. Simul. Mater. Sci. Eng. 8 103

    [14]

    Datta A, Waghmare U V, Ramamurty U 2009 Scripta Mater. 60 124

    [15]

    Wei X M, Zhang J M, Xu K W 2008 Mater. Sci. Eng. A 486 540

    [16]

    He G, Rong Y H,Xu Z Y 2000 Sci. Chin. E 30 1 (in Chinese) [何 刚、戎咏华、徐祖耀 2000 中国科学E 30 1]

    [17]

    Zhang J M, Wu X J, Huang Y H, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民、吴喜军、黄育红、徐可为 2006 物理学报 55 393]

    [18]

    Xie H Y, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [19]

    Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49

    [20]

    Machov A, Beltz G E, Chang M 1999 Model. Simul. Mater. Sci. Eng. 7 949

    [21]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105

    [22]

    Cardonne S M, Kumar P, Michaluk C A, Schwartz H D 1995 Int. J. Refract. Met. Hard Mater. 13 187

    [23]

    Buckman R W 2000 J. Mater. 52 40

    [24]

    Wang Y M, Hodge A M, Biener J, Hamza A V 2005 Appl. Phys. Lett. 86 101915

    [25]

    Pan Z, Li Y, Wei Q 2008 Acta Mater. 56 3470

    [26]

    Murr L E, Meyers M A, Niou C S, Chen Y J, Pappu S, Kennedy C 1997 Acta Mater. 45 157

    [27]

    Guo Y F, Wang C Y, Wang Y S 2004 Phil. Mag. Lett. 84 763

    [28]

    Farkas D 2005 Phil. Mag. Lett. 85 387

    [29]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [30]

    Li Y H, Siegel D J, Adams J B, Liu X Y 2003 Phys. Rev. B 67 125101

    [31]

    Featherston F H, Neighbours J R 1963 Phys. Rev. 130 1324

    [32]

    Guo Y F, Wang CY, Zhao D L 2003 Mater. Sci. Eng. A 349 29

    [33]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [34]

    Tadmor E B, Ortiz M, Phillips R 1996 Phil. Mag. A 73 1529

    [35]

    Tadmor E B, Miller R, Phillips R, Ortiz M 1999 J. Mater. Res. 14 2233

    [36]

    Miller R, Tamdor E B, Phillips R, Ortiz M 1998 Model. Simul. Mater. Sci. Eng. 6 607

    [37]

    Shenoy V B, Miller R, Tadmor E B, Phillips R, Ortiz M 1998 Phys. Rev. Lett. 80 742

    [38]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [39]

    Shenoy V B, Miller R, Tadmor E B, Rodney D, Phillips R, Ortiz M 1999 J. Mech. Phys. Solids 47 611

  • [1]

    Komura S, Horita Z, Nemoto M, Langdon T G 1999 J. Mater. Res. 14 4044

    [2]

    Hoshino T, Kumamoto K, Kokubun K, Ishimaru T 1995 Phys. Rev. B 51 14594

    [3]

    Thornton P R, Hirsch P B 1958 Phil. Mag. 3 738

    [4]

    Rohatgi A, Vecchio K S, Gray G T 2001 Metall. Mater. Trans. A 32 135

    [5]

    Howie A, Swann P R 1961 Phil. Mag. 6 1215

    [6]

    Cockayne D J H, Jenkins M L, Ray I L F 1971 Phil. Mag. 192 1383

    [7]

    Schweizer S, Elssser C, Hummler K, Fhnle M 1992 Phys. Rev. B 46 14270

    [8]

    Ferreira P J, Müllner P 1998 Acta Mater. 46 4479

    [9]

    Rice J R 1992 J. Mech. Phys. Solids 40 239

    [10]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [11]

    Van Swygenhoven H, Derlet P M, Frseth A G 2004 Nat. Mater. 3 399

    [12]

    Frseth A G, Derlet P M, Van Swygenhoven H 2004 Appl. Phys. Lett. 85 5863

    [13]

    Zimmerman J A, Gao H, Abraham F F 2000 Model. Simul. Mater. Sci. Eng. 8 103

    [14]

    Datta A, Waghmare U V, Ramamurty U 2009 Scripta Mater. 60 124

    [15]

    Wei X M, Zhang J M, Xu K W 2008 Mater. Sci. Eng. A 486 540

    [16]

    He G, Rong Y H,Xu Z Y 2000 Sci. Chin. E 30 1 (in Chinese) [何 刚、戎咏华、徐祖耀 2000 中国科学E 30 1]

    [17]

    Zhang J M, Wu X J, Huang Y H, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民、吴喜军、黄育红、徐可为 2006 物理学报 55 393]

    [18]

    Xie H Y, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [19]

    Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49

    [20]

    Machov A, Beltz G E, Chang M 1999 Model. Simul. Mater. Sci. Eng. 7 949

    [21]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105

    [22]

    Cardonne S M, Kumar P, Michaluk C A, Schwartz H D 1995 Int. J. Refract. Met. Hard Mater. 13 187

    [23]

    Buckman R W 2000 J. Mater. 52 40

    [24]

    Wang Y M, Hodge A M, Biener J, Hamza A V 2005 Appl. Phys. Lett. 86 101915

    [25]

    Pan Z, Li Y, Wei Q 2008 Acta Mater. 56 3470

    [26]

    Murr L E, Meyers M A, Niou C S, Chen Y J, Pappu S, Kennedy C 1997 Acta Mater. 45 157

    [27]

    Guo Y F, Wang C Y, Wang Y S 2004 Phil. Mag. Lett. 84 763

    [28]

    Farkas D 2005 Phil. Mag. Lett. 85 387

    [29]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [30]

    Li Y H, Siegel D J, Adams J B, Liu X Y 2003 Phys. Rev. B 67 125101

    [31]

    Featherston F H, Neighbours J R 1963 Phys. Rev. 130 1324

    [32]

    Guo Y F, Wang CY, Zhao D L 2003 Mater. Sci. Eng. A 349 29

    [33]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [34]

    Tadmor E B, Ortiz M, Phillips R 1996 Phil. Mag. A 73 1529

    [35]

    Tadmor E B, Miller R, Phillips R, Ortiz M 1999 J. Mater. Res. 14 2233

    [36]

    Miller R, Tamdor E B, Phillips R, Ortiz M 1998 Model. Simul. Mater. Sci. Eng. 6 607

    [37]

    Shenoy V B, Miller R, Tadmor E B, Phillips R, Ortiz M 1998 Phys. Rev. Lett. 80 742

    [38]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [39]

    Shenoy V B, Miller R, Tadmor E B, Rodney D, Phillips R, Ortiz M 1999 J. Mech. Phys. Solids 47 611

  • [1] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [2] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [3] 梁晋洁, 高宁, 李玉红. 体心立方Fe中\begin{document}${ \langle 100 \rangle}$\end{document}位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [4] 杜浩, 倪玉山. 钽、铁、钨三种体心立方金属裂纹的多尺度模拟及韧脆性分析. 物理学报, 2016, 65(19): 196201. doi: 10.7498/aps.65.196201
    [5] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [6] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [7] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [8] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析. 物理学报, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [9] 张建民, 吴喜军, 黄育红, 徐可为. fcc金属层错能的EAM法计算. 物理学报, 2006, 55(1): 393-397. doi: 10.7498/aps.55.393
    [10] 张建民, 徐可为. 体心立方多晶膜中应变能密度的各向异性分析. 物理学报, 2004, 53(1): 176-181. doi: 10.7498/aps.53.176
    [11] 张建民, 徐可为. 面心立方多晶薄膜中应变能密度对晶粒取向的依赖. 物理学报, 2002, 51(11): 2562-2566. doi: 10.7498/aps.51.2562
    [12] 金庆华, 王平基, 丁大同, 王鼎盛. 金属铝中层错能的缀加球面波法第一性原理计算. 物理学报, 1992, 41(10): 1632-1637. doi: 10.7498/aps.41.1632
    [13] 傅秀军, 郭子政, 周培勤, 刘有延. 广义Fibonacci准周期链能谱性质. 物理学报, 1992, 41(8): 1330-1337. doi: 10.7498/aps.41.1330
    [14] 朱慧珑, 黄祖洽. 体心立方金属中空位迁移规律. 物理学报, 1987, 36(9): 1122-1132. doi: 10.7498/aps.36.1122
    [15] 龙期威, 王屴. 位错在裂纹顶端的象力. 物理学报, 1984, 33(9): 1337-1340. doi: 10.7498/aps.33.1337
    [16] 邹本三, 叶恒强, 吴玉琨, 郭可信. 面心立方晶体高次孪晶化为一次旋转对称关系. 物理学报, 1979, 28(3): 297-304. doi: 10.7498/aps.28.297
    [17] 郭可信. 面心立方晶体中生成孪晶或六角密堆相的电子衍射分析. 物理学报, 1978, 27(5): 547-553. doi: 10.7498/aps.27.547
    [18] 杨正举. 体心立方金属中间隙杂质原子组态的弹性研究——Ⅰ.间隙杂质原子的位置及扩散激活能. 物理学报, 1966, 22(3): 281-293. doi: 10.7498/aps.22.281
    [19] 苏文辉, 刘维娜, 何澎民, 邱淑蓁. 面心立方金属的空穴松弛能和空穴形成能的计算. 物理学报, 1965, 21(10): 1767-1775. doi: 10.7498/aps.21.1767
    [20] 徐锡申. 体心立方晶二元合金超点阵理论. 物理学报, 1956, 12(6): 528-549. doi: 10.7498/aps.12.528
计量
  • 文章访问数:  5796
  • PDF下载量:  1698
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-26
  • 修回日期:  2010-08-17
  • 刊出日期:  2011-03-05

体心立方Ta的广义面错能及在Ⅱ型裂纹尖端初始塑性研究中的应用

  • 1. 复旦大学力学与工程科学系,上海 200433
    基金项目: 国家自然科学基金(批准号:10576010) 资助的课题.

摘要: 基于嵌入原子势考察体心立方(bcc)金属Ta的广义层错能和广义孪晶能并获得广义层错能和广义孪晶能曲线. 研究表明,bcc Ta的广义层错能曲线与面心立方金属的广义层错能曲线有明显差异,Ta的广义层错能曲线不存在明显的能量极小值,位错主要以全位错的形式发射. 不同原子厚度的广义孪晶能曲线表明4个原子层的孪晶能曲线开始出现亚稳定的能量极小值,5个原子层的孪晶能曲线出现稳定的能量极小值. 为进一步验证广义层错能和广义孪晶能曲线揭示的塑性变形机理,采用准连续介质力学多尺度方法研究Ⅱ型裂纹尖端的初始塑性变形过程.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回