搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁流体表面推进机理与效果分析

刘宗凯 周本谋 刘会星 刘志刚 黄翼飞

引用本文:
Citation:

电磁流体表面推进机理与效果分析

刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞

The analysis of effects and theories for electromagnetic hydrodynamics propulsion by surface

Liu Zong-Kai, Zhou Ben-Mou, Liu Hui-Xing, Liu Zhi-Gang, Huang Yi-Fei
PDF
导出引用
  • 电磁流体表面推进是在推进单元周围的导电流体中(海水、等离子体等)激励出电磁体积力,并利用电磁体积力的反作用力达到推进的目的. 基于电磁场和流体力学的基本控制方程,采用有限体积法对电磁流体表面推进的效果进行了数值模拟研究,分析了在不同姿态(攻角)和不同电磁体积力的作用下,航行器周围流场结构的变化规律和推力的变化特点.研究结果表明:沿航行器表面分布的电磁体积力可以有效地改变流体边界层的结构,并能向流体边界层传输动量与能量,从而使航行器获得所需的推力.流体对航行器的黏性阻力和压差阻力的影响随作用参数的增大而减弱
    The electromagnetic hydrodynamics(EMHD) propulsion by surface is performed through the reaction of electromagnetic body force, which is induced in conductive flow fluid (such as seawater, plasma and so on) around the propulsion unit. Based on the basic governing equations of electromagnetic field and hydrodynamics, by numerical simulations obtained by the finite volume method, the characteristics of flow field structures near the navigating and the strength variation of propulsion force are investigated at varying positions (the angle of attack). The results show that surface electromagnetic body force can modify the structure and the input energy of flow boundary layer, which enables the navigation to obtain the thrust. With the increase of interaction parameter the effect of viscous resistance and pressure drag to navigating decrease and the nonlinear relationship between propulsion coefficient and interaction parameter tends to be linear gradually. The strength of propulsion force depends mainly on the electromagnetic body force. The lift force can be improved effectively through the EMHD propulsion by surface at an angle of attack for navigating. The navigating surface can be designed as working space of propulsion units, which is of certain significance for optimizing the whole struction and improving the efficiency.
    • 基金项目: 国家自然科学基金(批准号:10572061)和南京理工大学科研发展基金(批准号:XKF09058) 资助的课题.
    [1]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [2]
    [3]

    Engel A, Friedrichs R 2002 Am. J. Phys. 70 4

    [4]
    [5]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [6]
    [7]

    McCamley M, Henoch C 2006 AIAA Flow Control Conference (Reston: American Institute of Aeronautics and Astronautics) p3191

    [8]
    [9]

    Lantzsch R, Gerbeth G 2007 J. Cryst. Growth 305 249

    [10]

    Zhang H, Fan B C, Chen Z H 2010 Comput. Fluids 39 1261

    [11]
    [12]
    [13]

    Weier T 2003 Flow Turbul. Combus. 71 5

    [14]
    [15]

    Weier T, Gerbeth G 2004 Eur. J. Mech. B 23 835

    [16]
    [17]

    Sam L P, Rao B N 1995 Acta Mech. 113 1

    [18]
    [19]

    Sathyakrishna M 2001 Acta Mech. 150 67

    [20]

    Dousset V, Alban P 2008 Phys. Fluids 20 017104

    [21]
    [22]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese)[陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]

    [23]
    [24]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [25]
    [26]
    [27]

    Bityurin V A, Bocharov A N 2005 AIAA/CIRA International Space Planes and Hypersonics Systems and Technology (Reston:American Institute of Aeronautics and Astronautics) p3225

    [28]
    [29]

    Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1027

    [30]
    [31]

    Qiu X M, Tang D L, Sun A P, Liu W D, Zeng X J 2007 Chin. Phys. 16 186

    [32]
    [33]

    Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494 (in Chinese) [杨 涓、苏纬仪、毛根旺、夏广庆 2006 物理学报 55 6494]

    [34]

    Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B 29 53

    [35]
    [36]

    Smolentsev S, Abdou M 2005 Appl. Math. Model. 29 215

    [37]
    [38]

    Molokov S 2007 Magnetohydrodynamics Historical Evolution and Trends (Berlin: Springer) p295

    [39]
    [40]
    [41]

    Baaziz D 2009 Magnetohydrodynamics 45 281

    [42]

    Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B 25 137

    [43]
    [44]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp157240

    [45]
    [46]
    [47]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) p93 (in Chinese) [任玉新、陈海昕 2006 计算流体力学基础 (北京: 清华大学出版社) 第93页]

  • [1]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [2]
    [3]

    Engel A, Friedrichs R 2002 Am. J. Phys. 70 4

    [4]
    [5]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [6]
    [7]

    McCamley M, Henoch C 2006 AIAA Flow Control Conference (Reston: American Institute of Aeronautics and Astronautics) p3191

    [8]
    [9]

    Lantzsch R, Gerbeth G 2007 J. Cryst. Growth 305 249

    [10]

    Zhang H, Fan B C, Chen Z H 2010 Comput. Fluids 39 1261

    [11]
    [12]
    [13]

    Weier T 2003 Flow Turbul. Combus. 71 5

    [14]
    [15]

    Weier T, Gerbeth G 2004 Eur. J. Mech. B 23 835

    [16]
    [17]

    Sam L P, Rao B N 1995 Acta Mech. 113 1

    [18]
    [19]

    Sathyakrishna M 2001 Acta Mech. 150 67

    [20]

    Dousset V, Alban P 2008 Phys. Fluids 20 017104

    [21]
    [22]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese)[陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]

    [23]
    [24]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [25]
    [26]
    [27]

    Bityurin V A, Bocharov A N 2005 AIAA/CIRA International Space Planes and Hypersonics Systems and Technology (Reston:American Institute of Aeronautics and Astronautics) p3225

    [28]
    [29]

    Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1027

    [30]
    [31]

    Qiu X M, Tang D L, Sun A P, Liu W D, Zeng X J 2007 Chin. Phys. 16 186

    [32]
    [33]

    Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494 (in Chinese) [杨 涓、苏纬仪、毛根旺、夏广庆 2006 物理学报 55 6494]

    [34]

    Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B 29 53

    [35]
    [36]

    Smolentsev S, Abdou M 2005 Appl. Math. Model. 29 215

    [37]
    [38]

    Molokov S 2007 Magnetohydrodynamics Historical Evolution and Trends (Berlin: Springer) p295

    [39]
    [40]
    [41]

    Baaziz D 2009 Magnetohydrodynamics 45 281

    [42]

    Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B 25 137

    [43]
    [44]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp157240

    [45]
    [46]
    [47]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) p93 (in Chinese) [任玉新、陈海昕 2006 计算流体力学基础 (北京: 清华大学出版社) 第93页]

  • [1] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] 施全权, 杨玉真, 赵准, 安秉文, 田朋溢, 蒋成成, 邓科, 贾晗, 杨军. 基于二阶共鸣器单元的宽频消声器研究与设计. 物理学报, 2022, 71(23): 234301. doi: 10.7498/aps.71.20221377
    [3] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [4] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [5] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [6] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [7] 段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟. 霍尔推进器壁面材料二次电子发射及鞘层特性. 物理学报, 2014, 63(8): 085204. doi: 10.7498/aps.63.085204
    [8] 刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰. 基于回转体型艇身的电磁流体表面推进与矢量控制特性研究. 物理学报, 2014, 63(7): 074704. doi: 10.7498/aps.63.074704
    [9] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器. 物理学报, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 唐光明, 苗俊刚, 董金明, 胡晓晴. 一种性能稳定的新Y形单元厚屏频率选择表面. 物理学报, 2012, 61(11): 118401. doi: 10.7498/aps.61.118401
    [12] 唐光明, 苗俊刚, 董金明. 一种介质-金属加载圆孔单元厚屏频率选择表面. 物理学报, 2012, 61(6): 068402. doi: 10.7498/aps.61.068402
    [13] 郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣. 电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响. 物理学报, 2012, 61(23): 238501. doi: 10.7498/aps.61.238501
    [14] 毕娟, 张喜和, 倪晓武. 长脉冲激光对组成CCD图像传感器的MOS光敏单元的硬破坏机理研究. 物理学报, 2011, 60(11): 114210. doi: 10.7498/aps.60.114210
    [15] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [16] 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
    [17] 方春易, 张树仁, 卢俊, 汪剑波, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究. 物理学报, 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [18] 贾宏燕, 高劲松, 冯晓国, 孙连春. 一种性能稳定的新单元频率选择表面. 物理学报, 2009, 58(1): 505-510. doi: 10.7498/aps.58.505
    [19] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [20] 李小秋, 高劲松, 赵晶丽, 孙连春. 一种适用于雷达罩的频率选择表面新单元研究. 物理学报, 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
计量
  • 文章访问数:  7600
  • PDF下载量:  985
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-21
  • 修回日期:  2010-10-13
  • 刊出日期:  2011-04-05

/

返回文章
返回