搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响

郑天祥 钟云波 孙宗乾 王江 吴秋芳 冯美龙 任忠鸣

引用本文:
Citation:

电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响

郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣

The effect of electromagnetic compound field on the solidified microstructure of Zn-10 wt%Bi hyper-monotectic alloy

Zheng Tian-Xiang, Zhong Yun-Bo, Sun Zong-Qian, Wang Jiang, Wu Qiu-Fang, Feng Mei-Long, Ren Zhong-Ming
PDF
导出引用
  • 以Zn-10 wt%Bi的过偏晶合金作为研究对象,在强磁场条件下, 考察了不同电磁体积力对其显微凝固组织与凝固过程的影响.实验结果表明, 在一定的强静磁场下,当交变电流增加到某一特定值时(交变电流频率为50 Hz), 得到的凝固组织最为均匀,第二相颗粒直径也达到最小;在固定交变电流值的条件下 (交变电流频率为50 Hz), Zn-10 wt%Bi合金的凝固组织随着磁感应强度的增加,其偏析程度、 弥散程度和第二相Bi颗粒的大小都有明显的改善.实验分析结果表明,磁场复合交变电流产生的电磁体积力的大小,对合金凝固组织都有显著影响,通过控制磁感应强度和交变电流大小, 从而获得较为理想的过偏晶合金凝固组织.
    The effects of different electro-magnetic body forces on the microstructure and solidifying process of Zn-10 wt%Bi hyper-monotectic alloy under the condition of high magnetic field are investigated in this paper. The result indicate, on the one hand, that the solidified structure is wanted most and the diameter of the second phase particle is minimum when the alternative current (50 Hz) increases to a certain value. On the other hand, the degree of segregation, dispersion and size of the second Bi phase particles in solidified structure of Zn-10 wt%Bi hyper-monotectic alloy are refined significantly with the increase of magnetic induction intensity under a fixed alternative current (50 Hz) value. The analysis result indicates that both the magnetic induction intensity and alternative current intensity have a significant effect on solidified structure so that we can obtain a more competitive solidified structure of monotectic alloy by controlling the intensity of magnetic induction and alternative current.
    • 基金项目: 国家自然科学基金(批准号: 50974085, 51034010)、上海市人才发展基金(批准号: 2009046)、 国家高技术研究发展计划(批准号: 2009AA03Z109)、 上海市重大科技攻关项目批准号: 09dz1206401, 09dz1206402) 和上海市重大研究创新项目(批准号: 09zz98)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 50974085, 51034010), Development Foundation for Talents in Shanghai, China (Grant No. 2009046), National High Technology Research and Development Program of China (Grant No. 2009AA03Z109), Key Research and Innovation Program from Shanghai Municipal Education Commission, China (Grant No. 09zz98), and Key Project from Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 09dz1206401, 09dz1206402).
    [1]

    Jia J, Zhao J Z, Guo J J, Liu Y 2002 Immiscible Alloy and Its Processing Method (Harbin: Harbin Institute of Technology Press) pp1-2 (in Chinese) [贾均, 赵九洲, 郭景杰, 刘源 2002 难混溶合金及其制备技术(哈尔滨: 哈尔滨工业大学出版社) 第1—2页]

    [2]

    Song T, Wang T M, Zhao J Z, Xue G X, Li T J 2007 Foundry 56 1025 (in Chinese) [宋涛, 王同敏, 赵九洲, 薛冠霞, 李廷举 2007 铸造 56 1025]

    [3]

    Inoue A,Yano N J 1987 Mater. Sci. 22 123

    [4]

    Otto G H, Ratke L 1974 Proceedings of the Third Space Processing Symposium-Skylab Results Marshall Space Flight Center, Alabama, April 30-May 1, 1974, p1031

    [5]

    Wecker J, Helmolt R V, Schultz L, Samwer K 1993 Appl. Phys. Lett. 52 1985

    [6]

    Uenishi K, Kawaguchi H, Kobayashi K F 1994 J. Mater. Sci. 29 4860

    [7]

    Walter H U 1986 Binary systems with miscibility gap in the liquid state In: Materials Science in Space, edited by Feuerbacher B, Hamacher H, Naumann R J Heidelberg Newyork: Sprinverlag Press pp343-378

    [8]

    Mackay M L 1977 Met. Pro. 111 32

    [9]

    Cahn J W 1979 Metall. Trans. 10A 119

    [10]

    Derby B, Favier J J 1983 Acta Metal. 31 1123

    [11]

    Carlberg T, Fredriksson H 1980 Melellurgical Transaction A 11 10

    [12]

    Lacy L L, Otto G 1974 AIAA/ASME Paper. Boston 74

    [13]

    Obramov P V, Semin S I, Sorkin M Z, Chashechkina D Y 1980 Phys. Chem. Mater. Process 1 47

    [14]

    Pathak J P, Tiwari S N, Malhotra S L 1979 Metals Tech. 11 442

    [15]

    Lee J C 1984 The Formation of Liquid-Liquid Dispersion-Chemical and Engineering Aspects (London: Chameleon Press Ltd.) p1

    [16]

    Ashok S T, Rajan T V1996 Wear 197 105

    [17]

    Xian A P, Zhang X M, Li Z Y 1996 Acta Mater. 12 345 (in Chinese) [冼爱平, 张修睦, 李忠玉 1996 金属学报 12 345]

    [18]

    Duwez P, Willens R H, klement W 1960 J. Appl. Phys. 31 1136

    [19]

    Hideyuki Yasuda, Itsudo Ohnaka, Osamu Kawakani, Kazuyuki Veno, Kohji Kishio 2003 ISTJ International 43 942

    [20]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Mater. 2 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 2 165]

    [21]

    Shi J F, Zhong Y B, Ren Z M, Deng K, Xu K D 2006 Shanghai Metals 28 22 (in Chinese) [史俊芳,钟云波,任忠鸣,邓康,徐匡迪 2006上海金属 28 22]

    [22]

    Vives C 1996 Journal of Crystal Growth 158 118

    [23]

    Miwa K 2001 AIST Today Intl. Ed. 29

    [24]

    Wang J, Zhong Y B, Ren W L, Lei Z S, Ren Z M, Xu K D 2009 Acta Phys. Sin. 58 893 (in Chinese) [王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪 2009 物理学报 58 893]

    [25]

    Wang J, Zhong Y B, Wang C, Wang Z Q, Ren Z M, Xu K D 2011 Acta Phys. Sin. 60 076101 (in Chinese) [王江, 钟云波, 汪超, 王志强, 任忠鸣, 徐匡迪 2011 物理学报 60 076101]

    [26]

    Zhuang L X, Yi X Y, Ma H Y 1991 Fluid dynamics (1st eds.) (Anhui: University of Science and Technology of China) pp163-168 (in Chinese) [庄礼贤, 尹协远, 马晖扬 1991 流体力学(第一版) (安徽: 中国科学技术大学) 第163—168页]

    [27]

    Li C J 2010 Ph.D. Dissertation (Shanghai: Shanghai University) (in Chinese) [李传军 2010 博士学位论文 (上海:上海大学)]

    [28]

    Zener C 1949 J. Appl. Phys. 20 950

  • [1]

    Jia J, Zhao J Z, Guo J J, Liu Y 2002 Immiscible Alloy and Its Processing Method (Harbin: Harbin Institute of Technology Press) pp1-2 (in Chinese) [贾均, 赵九洲, 郭景杰, 刘源 2002 难混溶合金及其制备技术(哈尔滨: 哈尔滨工业大学出版社) 第1—2页]

    [2]

    Song T, Wang T M, Zhao J Z, Xue G X, Li T J 2007 Foundry 56 1025 (in Chinese) [宋涛, 王同敏, 赵九洲, 薛冠霞, 李廷举 2007 铸造 56 1025]

    [3]

    Inoue A,Yano N J 1987 Mater. Sci. 22 123

    [4]

    Otto G H, Ratke L 1974 Proceedings of the Third Space Processing Symposium-Skylab Results Marshall Space Flight Center, Alabama, April 30-May 1, 1974, p1031

    [5]

    Wecker J, Helmolt R V, Schultz L, Samwer K 1993 Appl. Phys. Lett. 52 1985

    [6]

    Uenishi K, Kawaguchi H, Kobayashi K F 1994 J. Mater. Sci. 29 4860

    [7]

    Walter H U 1986 Binary systems with miscibility gap in the liquid state In: Materials Science in Space, edited by Feuerbacher B, Hamacher H, Naumann R J Heidelberg Newyork: Sprinverlag Press pp343-378

    [8]

    Mackay M L 1977 Met. Pro. 111 32

    [9]

    Cahn J W 1979 Metall. Trans. 10A 119

    [10]

    Derby B, Favier J J 1983 Acta Metal. 31 1123

    [11]

    Carlberg T, Fredriksson H 1980 Melellurgical Transaction A 11 10

    [12]

    Lacy L L, Otto G 1974 AIAA/ASME Paper. Boston 74

    [13]

    Obramov P V, Semin S I, Sorkin M Z, Chashechkina D Y 1980 Phys. Chem. Mater. Process 1 47

    [14]

    Pathak J P, Tiwari S N, Malhotra S L 1979 Metals Tech. 11 442

    [15]

    Lee J C 1984 The Formation of Liquid-Liquid Dispersion-Chemical and Engineering Aspects (London: Chameleon Press Ltd.) p1

    [16]

    Ashok S T, Rajan T V1996 Wear 197 105

    [17]

    Xian A P, Zhang X M, Li Z Y 1996 Acta Mater. 12 345 (in Chinese) [冼爱平, 张修睦, 李忠玉 1996 金属学报 12 345]

    [18]

    Duwez P, Willens R H, klement W 1960 J. Appl. Phys. 31 1136

    [19]

    Hideyuki Yasuda, Itsudo Ohnaka, Osamu Kawakani, Kazuyuki Veno, Kohji Kishio 2003 ISTJ International 43 942

    [20]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Mater. 2 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 2 165]

    [21]

    Shi J F, Zhong Y B, Ren Z M, Deng K, Xu K D 2006 Shanghai Metals 28 22 (in Chinese) [史俊芳,钟云波,任忠鸣,邓康,徐匡迪 2006上海金属 28 22]

    [22]

    Vives C 1996 Journal of Crystal Growth 158 118

    [23]

    Miwa K 2001 AIST Today Intl. Ed. 29

    [24]

    Wang J, Zhong Y B, Ren W L, Lei Z S, Ren Z M, Xu K D 2009 Acta Phys. Sin. 58 893 (in Chinese) [王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪 2009 物理学报 58 893]

    [25]

    Wang J, Zhong Y B, Wang C, Wang Z Q, Ren Z M, Xu K D 2011 Acta Phys. Sin. 60 076101 (in Chinese) [王江, 钟云波, 汪超, 王志强, 任忠鸣, 徐匡迪 2011 物理学报 60 076101]

    [26]

    Zhuang L X, Yi X Y, Ma H Y 1991 Fluid dynamics (1st eds.) (Anhui: University of Science and Technology of China) pp163-168 (in Chinese) [庄礼贤, 尹协远, 马晖扬 1991 流体力学(第一版) (安徽: 中国科学技术大学) 第163—168页]

    [27]

    Li C J 2010 Ph.D. Dissertation (Shanghai: Shanghai University) (in Chinese) [李传军 2010 博士学位论文 (上海:上海大学)]

    [28]

    Zener C 1949 J. Appl. Phys. 20 950

  • [1] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一. 物理学报, 2021, 70(1): 018401. doi: 10.7498/aps.70.20202042
    [2] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究. 物理学报, 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [3] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [4] 孙凌涛, 郭朝中, 肖绪洋. Cu偏析诱导Co团簇结构及性质异常的动力学模拟. 物理学报, 2016, 65(12): 123601. doi: 10.7498/aps.65.123601
    [5] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [6] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [7] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [8] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [9] 刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞. 电磁流体表面推进机理与效果分析. 物理学报, 2011, 60(8): 084701. doi: 10.7498/aps.60.084701
    [10] 王江, 钟云波, 汪超, 王志强, 任忠鸣, 徐匡迪. 电磁复合场制备匀质Zn-Bi偏晶合金的物理模拟. 物理学报, 2011, 60(7): 076101. doi: 10.7498/aps.60.076101
    [11] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [12] 王建元, 陈长乐, 翟薇, 金克新. 切向流动对偏晶合金定向生长机理的影响. 物理学报, 2010, 59(10): 7424-7430. doi: 10.7498/aps.59.7424
    [13] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [14] 王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪. 强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固. 物理学报, 2009, 58(2): 893-900. doi: 10.7498/aps.58.893
    [15] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [16] 徐锦锋, 代富平, 魏炳波. 急冷条件下Cu-Pb偏晶合金的相分离研究. 物理学报, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [19] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [20] 班春燕, 巴启先, 崔建忠, 路贵民, 訾炳涛. 脉冲电流作用下LY12铝合金的微观结构和合金元素分布. 物理学报, 2001, 50(10): 2028-2031. doi: 10.7498/aps.50.2028
计量
  • 文章访问数:  6374
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-05
  • 修回日期:  2012-06-19
  • 刊出日期:  2012-12-05

电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响

  • 1. 上海大学,上海市现代冶金与材料制备重点实验室, 上海 200072
    基金项目: 国家自然科学基金(批准号: 50974085, 51034010)、上海市人才发展基金(批准号: 2009046)、 国家高技术研究发展计划(批准号: 2009AA03Z109)、 上海市重大科技攻关项目批准号: 09dz1206401, 09dz1206402) 和上海市重大研究创新项目(批准号: 09zz98)资助的课题.

摘要: 以Zn-10 wt%Bi的过偏晶合金作为研究对象,在强磁场条件下, 考察了不同电磁体积力对其显微凝固组织与凝固过程的影响.实验结果表明, 在一定的强静磁场下,当交变电流增加到某一特定值时(交变电流频率为50 Hz), 得到的凝固组织最为均匀,第二相颗粒直径也达到最小;在固定交变电流值的条件下 (交变电流频率为50 Hz), Zn-10 wt%Bi合金的凝固组织随着磁感应强度的增加,其偏析程度、 弥散程度和第二相Bi颗粒的大小都有明显的改善.实验分析结果表明,磁场复合交变电流产生的电磁体积力的大小,对合金凝固组织都有显著影响,通过控制磁感应强度和交变电流大小, 从而获得较为理想的过偏晶合金凝固组织.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回