搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Wheeler's Conforming Mapping扩展变换法的聚合物电光调制器特性研究

文玥 张晓霞 黄春阳 沈杰

引用本文:
Citation:

基于Wheeler's Conforming Mapping扩展变换法的聚合物电光调制器特性研究

文玥, 张晓霞, 黄春阳, 沈杰

Characteristic study of polymer electro-optic modulator based on extended wheeler's conforming mapping method

Wen Yue, Zhang Xiao-Xia, Huang Chun-Yang, Shen Jie
PDF
导出引用
  • 基于Wheeler变换模型,提出了一种分析多层介质微波特征参数的方法Wheeler's Conforming Mapping扩展变换法,并利用该方法得到了微波特征参数与各层介质参数之间的表达式,在此基础上分析了微带电极的微波特性参数. 与准静态有限元法(QS-FEM)相比,Wheeler's Conforming Mapping扩展变换法不仅计算准确而且具有更高的计算效率. 将该方法应用于聚合物电光调制器的特性研究,对传统模型进行改进,通过添加补偿层来调整微波等效折射率和特征阻抗,改善微波与光波有效折射率的失配度,在理论上实现了聚合物电光调制器的速率和阻抗的同时匹配.
    An extended Wheeler's conforming mapping method is proposed to analyze the characteristic parameters of the multilayer based on the simple Wheeler's transformation. The explicit expression between the microwave characteristic parameter and the each layer parameter is obtained. Compared with the results obtained by the quasi-static finite element method (QS-FEM), our results show that the present approach can not only accurately evaluate the characteristic parameters of the multilayer but also have a great computational efficiency. Based on this method, a modified structure of the typical electro-optic modulator is given. The velocity matching and the impedance matching can be achieved simultaneously by adding a compensation layer.
    • 基金项目: 国家高技术研究发展计划(新材料领域)(批准号:2009AA03Z413)资助的课题.
    [1]

    Dagli N 1999 IEEE Trans. Microwave Theory Tech. 47 1151

    [2]
    [3]

    Chen D, Fetterman H R 1997 Appl. Phys. Lett. 70 3335

    [4]
    [5]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang Y 2007 Chin. Phys. 16 1459

    [6]

    Gorman T, Haxha S, Ju J J 2009 J. Lightw. Technol. 27 68

    [7]
    [8]
    [9]

    Koos C, Vorreau P, Vallaitis T 2009 Nature Photonics 3 216

    [10]

    Brosi J M, Koos C, Andrean L C 2008 Opt. Express 16 4177

    [11]
    [12]

    Li B, Vemagiri J, Dinu R 2009 J. Llighw. Technol. 27 606

    [13]
    [14]
    [15]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang Y 2008 Acta Phys. Sin. 57 4558(in Chinese) [谢红云、金冬月、何莉剑、张 蔚、王 路、张万荣、王 圩 2008 物理学报 57 4558]

    [16]

    Rod C, Steven K 1984 IEEE J. Quantum Elect. 20 301

    [17]
    [18]
    [19]

    Li S S, 1993 Acta Phys. Sin. 42 1020 (in Chinese) [李世忱 1993 物理学报 42 1020]

    [20]

    Chen G J,Xia Z F,Zhang Y W 1999 Acta Phys. Sin. 48 1066 (in Chinese) [陈钢进、夏钟福、张冶文 1999 物理学报 48 1066]

    [21]
    [22]

    Mark L, Howard E K, Christoph E 2002 Science 298 1401

    [23]
    [24]

    Shi Y Q, Lin W P, David J O 2000 Appl. Phys. Lett. 77 1

    [25]
    [26]
    [27]

    Yamashita E 1968 IEEE Trans. Microwave Theory Tech. 16 529

    [28]
    [29]

    Yamashita E, Atsuki K 1970 IEEE Trans. Microwave Theory Tech. 18 238

    [30]
    [31]

    Farrar A, Adams A T 1974 IEEE Trans. Microwave Theory Tech. 22 889

    [32]

    Wheeler H A 1964 IEEE Trans. Microwave Theory Tech. 12 280

    [33]
  • [1]

    Dagli N 1999 IEEE Trans. Microwave Theory Tech. 47 1151

    [2]
    [3]

    Chen D, Fetterman H R 1997 Appl. Phys. Lett. 70 3335

    [4]
    [5]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang Y 2007 Chin. Phys. 16 1459

    [6]

    Gorman T, Haxha S, Ju J J 2009 J. Lightw. Technol. 27 68

    [7]
    [8]
    [9]

    Koos C, Vorreau P, Vallaitis T 2009 Nature Photonics 3 216

    [10]

    Brosi J M, Koos C, Andrean L C 2008 Opt. Express 16 4177

    [11]
    [12]

    Li B, Vemagiri J, Dinu R 2009 J. Llighw. Technol. 27 606

    [13]
    [14]
    [15]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang Y 2008 Acta Phys. Sin. 57 4558(in Chinese) [谢红云、金冬月、何莉剑、张 蔚、王 路、张万荣、王 圩 2008 物理学报 57 4558]

    [16]

    Rod C, Steven K 1984 IEEE J. Quantum Elect. 20 301

    [17]
    [18]
    [19]

    Li S S, 1993 Acta Phys. Sin. 42 1020 (in Chinese) [李世忱 1993 物理学报 42 1020]

    [20]

    Chen G J,Xia Z F,Zhang Y W 1999 Acta Phys. Sin. 48 1066 (in Chinese) [陈钢进、夏钟福、张冶文 1999 物理学报 48 1066]

    [21]
    [22]

    Mark L, Howard E K, Christoph E 2002 Science 298 1401

    [23]
    [24]

    Shi Y Q, Lin W P, David J O 2000 Appl. Phys. Lett. 77 1

    [25]
    [26]
    [27]

    Yamashita E 1968 IEEE Trans. Microwave Theory Tech. 16 529

    [28]
    [29]

    Yamashita E, Atsuki K 1970 IEEE Trans. Microwave Theory Tech. 18 238

    [30]
    [31]

    Farrar A, Adams A T 1974 IEEE Trans. Microwave Theory Tech. 22 889

    [32]

    Wheeler H A 1964 IEEE Trans. Microwave Theory Tech. 12 280

    [33]
计量
  • 文章访问数:  4524
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-15
  • 修回日期:  2010-12-28
  • 刊出日期:  2011-05-05

基于Wheeler's Conforming Mapping扩展变换法的聚合物电光调制器特性研究

  • 1. 电子科技大学光电信息学院,成都 610054
    基金项目: 

    国家高技术研究发展计划(新材料领域)(批准号:2009AA03Z413)资助的课题.

摘要: 基于Wheeler变换模型,提出了一种分析多层介质微波特征参数的方法Wheeler's Conforming Mapping扩展变换法,并利用该方法得到了微波特征参数与各层介质参数之间的表达式,在此基础上分析了微带电极的微波特性参数. 与准静态有限元法(QS-FEM)相比,Wheeler's Conforming Mapping扩展变换法不仅计算准确而且具有更高的计算效率. 将该方法应用于聚合物电光调制器的特性研究,对传统模型进行改进,通过添加补偿层来调整微波等效折射率和特征阻抗,改善微波与光波有效折射率的失配度,在理论上实现了聚合物电光调制器的速率和阻抗的同时匹配.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回