搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白质相互作用网络特征的理论再现

万茜 周进 刘曾荣

引用本文:
Citation:

蛋白质相互作用网络特征的理论再现

万茜, 周进, 刘曾荣

Emergence of features in protein-protein interaction networks

Wan Xi, Zhou Jin, Liu Zeng-Rong
PDF
导出引用
  • 无标度性、小世界性、功能模块结构及度负关联性是大量生物网络共同的特征. 为了理解生物网络无标度性、小世界性和度负关联性的形成机制, 研究者已经提出了各种各样基于复制和变异的网络增长模型. 在本文中,我们从生物学的角度通过引入偏爱小复制原则及变异和非均匀的异源二聚作用构建了一个简单的蛋白质相互作用网络演化模型.数值模拟结果表明,该演化模型几乎可以再现现在实测结果所公认的蛋白质相互作用网络的性质:无标度性、小世界性、度负关联性和功能模块结构. 我们的演化模型对理解蛋白质相互作用网络演化过程中的可能机制提供了一定的帮助.
    Scale-free connectivity, small-world pattern, hierarchical modularity and disassortative mixing are prominent features shared by most biological networks. Up to now, various network growth models invoking gene duplication and divergence have been proposed to understand the evolutionary mechanisms shaping the scale-free connectivity, small-world pattern and disassortative mixing . In this paper, we present an evolutionary model by introducing a rule of small preference duplication of a node and sequently divergence plus non-uniform heterodimerization meaning that the probability that an heterodimerization link is added between duplicated nodes is proportional to the number of common neighbors shared by these nodes based on biological background, showing that our model can almost display series of topological characteristics of real protein interaction networks, such as scale-free connectivity, small-world pattern, disassortativity of degree-degree correlation and hierarchical modularity. Our model may yield relevant insights into the evolutionary mechanism of protein interaction networks behind it.
    • 基金项目: 国家自然科学基金(批准号:10832006, 10972129, 11172158)和上海市重点学科(批准号:S30104)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10832006, 10972129, 11172158), and the Key Disciplines of Shanghai Municipality, China (Grant No. S30104).
    [1]

    Uetz P, Giot L, Cagney G, Mansfield T A, Judson R S, Knight J R, Lockshon D, Narayan V, Srinvasan M, Pochart P, Emili Q A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg J M 2000 Nature 403 623

    [2]

    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y 2001 Proc. Natl. Acad. Sci. USA 98 4569

    [3]

    Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, Mewes H W, Stumpflen V 2006 Nucleic Acids Res. 34 436

    [4]

    Li S, Armstrong C M, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P O, Han J J, Chesneau A, Xu L, Tewari M, Wong S L, Zhang L V, Berriz G F, Jacotot L, Vaglio P, Reboul J, Kishikawa T, Li Q, Gabel H W, Elewa A, Baumgartner B, Rose D J, Yu H, Bosak S, Sequerra R, Fraser A, Mango S, Saxton W M, Strome S, Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Stamm L, Cunsalus K, Harper J W, Cusick M E, Roth F P, Hill D E, Vidal M 2004 Science 303 540

    [5]

    Giot L, Bader J S, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao Y L, Ooi C E, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, Mcdaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Loime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, Dasilva A, Zhong J, Stanyon C A, Finley R L, White K P, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets R A, Mckenna M P, Chant J, Rothberg J M 2003 Science 302 1727

    [6]

    Wanger A 2001 Mol. Biol. Evol. 18 1283

    [7]

    Sole R V, Pastor-Satorras R, Smith E D, Kepler T 2002 Adv. Comp. Syst. 5 43

    [8]

    Jeong H, Mason S P, Barabasi A L, Oltvai Z N 2001 Nature 411 41

    [9]

    Ravasz E, Barabasi A L 2003 Phys. Rev. E 67 026112

    [10]

    Williams R J, Martinez N D, Berlow E L, Dunne J A, Barabasi A L 2002 Science 297 1551

    [11]

    Yook S H, Oltvai Z N, Barabasi A L 2004 Proteomics 4 929

    [12]

    Hase T , Niimura Y, Kaminuma T, Tanaka H 2008 PloS One 3 e1667

    [13]

    Maslov S, Sneppen K 2002 Science 296 910

    [14]

    Vazquez A, Flammini A, Maritan A, Vespignani A 2003 Com- PlexUs 1 38

    [15]

    Chung F, Lu L, Dewey T G, Galas D J 2003 J. Comput. Biol. 10 677

    [16]

    Pastor-Satorras R, Smith E, Sole R V 2003 J. Theor. Biol. 222 199

    [17]

    Ispolatov I, Krapivsky P L, Yuryev A 2005 Phys. Rev. E 71 061911

    [18]

    Ispolatov I, Krapivsky P L, Yuryev A 2005 New J. Phys. 7 145

    [19]

    Dan Z, Liu Z R, Wang J Z 2007 Chin. Phys. Lett. 24 2766

    [20]

    Xu C S, Liu Z R, Wang R Q 2010 Physica A 389 643

    [21]

    Takemoto K, Oosawa C 2005 Phys. Rev. E 71 046116

    [22]

    Takemoto K, Oosawa C 2007 Math. Bios. 208 454

    [23]

    Kellis M, Patterson N, Endrizzi M, Birren B, Lander E S 2003 Nature 423 241

    [24]

    Prachumwat A, Li W H 2006 Mol. Biol. Evol. 23 30

    [25]

    Ohno S 1970 Evolution by Gene Duplication (New York: Springer-Verlag) pp100–110

    [26]

    Evlampiev K, Isambert H 2008 Proc. Natl. Acad. Sci. USA 105 9863

    [27]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [28]

    Zhou Y B, Cai S M, Wang W X, Zhou P L 2009 Physica A 388 999

    [29]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [30]

    Costa L F, Rodrigues F A, Vieso G T, Boas P R V 2007 Adv. Phys. 56 167

    [31]

    Farid N, Christensen K 2006 New J. Phys. 8 212

    [32]

    Li L, Huang Y, Xia X, Sun Z 2006 Mol Biol Evol. 23 12

  • [1]

    Uetz P, Giot L, Cagney G, Mansfield T A, Judson R S, Knight J R, Lockshon D, Narayan V, Srinvasan M, Pochart P, Emili Q A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg J M 2000 Nature 403 623

    [2]

    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y 2001 Proc. Natl. Acad. Sci. USA 98 4569

    [3]

    Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, Mewes H W, Stumpflen V 2006 Nucleic Acids Res. 34 436

    [4]

    Li S, Armstrong C M, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P O, Han J J, Chesneau A, Xu L, Tewari M, Wong S L, Zhang L V, Berriz G F, Jacotot L, Vaglio P, Reboul J, Kishikawa T, Li Q, Gabel H W, Elewa A, Baumgartner B, Rose D J, Yu H, Bosak S, Sequerra R, Fraser A, Mango S, Saxton W M, Strome S, Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Stamm L, Cunsalus K, Harper J W, Cusick M E, Roth F P, Hill D E, Vidal M 2004 Science 303 540

    [5]

    Giot L, Bader J S, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao Y L, Ooi C E, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, Mcdaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Loime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, Dasilva A, Zhong J, Stanyon C A, Finley R L, White K P, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets R A, Mckenna M P, Chant J, Rothberg J M 2003 Science 302 1727

    [6]

    Wanger A 2001 Mol. Biol. Evol. 18 1283

    [7]

    Sole R V, Pastor-Satorras R, Smith E D, Kepler T 2002 Adv. Comp. Syst. 5 43

    [8]

    Jeong H, Mason S P, Barabasi A L, Oltvai Z N 2001 Nature 411 41

    [9]

    Ravasz E, Barabasi A L 2003 Phys. Rev. E 67 026112

    [10]

    Williams R J, Martinez N D, Berlow E L, Dunne J A, Barabasi A L 2002 Science 297 1551

    [11]

    Yook S H, Oltvai Z N, Barabasi A L 2004 Proteomics 4 929

    [12]

    Hase T , Niimura Y, Kaminuma T, Tanaka H 2008 PloS One 3 e1667

    [13]

    Maslov S, Sneppen K 2002 Science 296 910

    [14]

    Vazquez A, Flammini A, Maritan A, Vespignani A 2003 Com- PlexUs 1 38

    [15]

    Chung F, Lu L, Dewey T G, Galas D J 2003 J. Comput. Biol. 10 677

    [16]

    Pastor-Satorras R, Smith E, Sole R V 2003 J. Theor. Biol. 222 199

    [17]

    Ispolatov I, Krapivsky P L, Yuryev A 2005 Phys. Rev. E 71 061911

    [18]

    Ispolatov I, Krapivsky P L, Yuryev A 2005 New J. Phys. 7 145

    [19]

    Dan Z, Liu Z R, Wang J Z 2007 Chin. Phys. Lett. 24 2766

    [20]

    Xu C S, Liu Z R, Wang R Q 2010 Physica A 389 643

    [21]

    Takemoto K, Oosawa C 2005 Phys. Rev. E 71 046116

    [22]

    Takemoto K, Oosawa C 2007 Math. Bios. 208 454

    [23]

    Kellis M, Patterson N, Endrizzi M, Birren B, Lander E S 2003 Nature 423 241

    [24]

    Prachumwat A, Li W H 2006 Mol. Biol. Evol. 23 30

    [25]

    Ohno S 1970 Evolution by Gene Duplication (New York: Springer-Verlag) pp100–110

    [26]

    Evlampiev K, Isambert H 2008 Proc. Natl. Acad. Sci. USA 105 9863

    [27]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [28]

    Zhou Y B, Cai S M, Wang W X, Zhou P L 2009 Physica A 388 999

    [29]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [30]

    Costa L F, Rodrigues F A, Vieso G T, Boas P R V 2007 Adv. Phys. 56 167

    [31]

    Farid N, Christensen K 2006 New J. Phys. 8 212

    [32]

    Li L, Huang Y, Xia X, Sun Z 2006 Mol Biol Evol. 23 12

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [3] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [4] 袁飞, 张传彪, 周昕, 黎明. 基于氨基酸位置特异性的蛋白质Loop区结构预测改进方法. 物理学报, 2016, 65(15): 158701. doi: 10.7498/aps.65.158701
    [5] 邓海游, 贾亚, 张阳. 蛋白质结构预测. 物理学报, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [6] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [7] 文锋, 王建华. 二维均匀流与重力短峰波相互作用解析. 物理学报, 2014, 63(9): 094701. doi: 10.7498/aps.63.094701
    [8] 丁玮, 江凡. 蛋白质晶体结构刚体优化的新方法. 物理学报, 2011, 60(4): 046103. doi: 10.7498/aps.60.046103
    [9] 王高峡, 沈轶. 网络的模块矩阵及其社团结构指标. 物理学报, 2010, 59(2): 842-850. doi: 10.7498/aps.59.842
    [10] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [11] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用. 物理学报, 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [12] 刘玉颖, 窦硕星, 王鹏业, 谢 平, 王渭池. 应用分子梳技术对DNA与组蛋白相互作用的研究. 物理学报, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [13] 欧阳世根, 王晓生, 佘卫龙. 异色光伏孤子之间的相互作用. 物理学报, 2004, 53(3): 767-772. doi: 10.7498/aps.53.767
    [14] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响. 物理学报, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [15] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
    [16] 张澄, 邓晓华, 霍裕平. 输运与撕裂模相互作用下等离子体的时空结构. 物理学报, 1990, 39(10): 1573-1582. doi: 10.7498/aps.39.1573
    [17] 范希庆, 申三国, 张德萱. fcc结构过渡金属(100)表面上杂质与吸附原子的相互作用. 物理学报, 1989, 38(1): 44-52. doi: 10.7498/aps.38.44
    [18] 孙伯勤, 叶朝辉. 魔角旋转情形下固体的非均匀相互作用. 物理学报, 1986, 35(3): 329-337. doi: 10.7498/aps.35.329
    [19] 范海福. 对映相位双解和变型分量关系式——直接法在测定蛋白质晶体结构中的应用. 物理学报, 1984, 33(3): 399-407. doi: 10.7498/aps.33.399
    [20] 基本粒子理论组. 瞬时相互作用近似下介子结构波函数的一些探讨(Ⅰ)——瞬时相互作用下介子波函数的一般性质. 物理学报, 1976, 25(4): 316-323. doi: 10.7498/aps.25.316
计量
  • 文章访问数:  5921
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-20
  • 修回日期:  2011-03-29
  • 刊出日期:  2012-01-05

/

返回文章
返回