-
目前压电分流阻尼技术在振动和噪声领域的应用得到了广泛的关注. 本文尝试将压电分流阻尼技术应用于水下吸声领域, 以提高覆盖层的吸声性能. 将压电覆盖层厚度模态的机电方程和声波传播的传递矩阵相结合, 建立一维电声模型. 该模型可以用于分析多层压电和非压电水下吸声覆盖层的吸声性能. 采用该模型分析了0-3型压电复合材料覆盖层的水下吸声性能. 压电复合材料的参数是采用Furukawa的模型计算的. 研究结果表明, 采用合适的分流电阻, 负电容分流电路可以在较宽的频率范围显著提高覆盖层的吸声性能. 其原理可以从阻抗匹配的角度解释, 负电容分流电路可以调整压电覆盖层的表面声阻抗, 使之与水的特性声阻抗相匹配.
-
关键词:
- 压电分流阻尼 /
- 吸声 /
- 负电容 /
- 0-3型压电复合材料
Recently piezoelectric shunt damping has attracted a lot of attention in vibration and noise control. In this article, piezoelectric shunt damping is used in underwater sound absorption in order to enhance the sound absorption of the coating. A one-dimensional electro-acoustic model is established for the calculation by combining the equivalent circuit of thickness mode of a piezoelectric composite coating with the transfer matrix of plane wave propagation. This model can be used to calculate the sound absorption of multiple layers of piezoelectric and non-piezoelectric mediums. Underwater sound absorption of the 0-3 type piezoelectric composite coatings is theoretically analyzed. Elastic, piezoelectric and dielectric constants of the 0-3 type piezoelectric composites are calculated by Furukawa's model. Results show that the negative capacitance circuit can adjust the surface acoustic impedance of the piezoelectric composite coating at broadband frequencies. Suitable shunt resistances can make it match the characteristic acoustic impedance of water better. Therefore, the sound absorption can be greatly promoted.-
Keywords:
- piezoelectric composite /
- piezoelectric shunt damping /
- sound absorption /
- negative capacitance
[1] Moheimani S O R, Fleming A J,Behrens S 2003 Smart Mater. Struct. 12 49
[2] Hagood H W, Flotow A van 1994 Journal of Sound and Vibration 146 243
[3] Wu S Y 1996 Proc. SPIE 2720 259
[4] Niederberger D, Fleming A J, Moheimani S O R, Morari M 2004 Smart Mater. Struct. 13 1025
[5] Moheimani S O R 2004 IEEE Transactions on Control Systems Technology 12 484
[6] Guyomar D, Richard T, Richard C 2008 Journal of Intelligent Material Systems and Structure 19 791
[7] Ciminello M, Calabro A, Ameduri S, Concilio A 2008 Journal of Intelligent Material Systems and Structures 19 1089
[8] Neubauer M, Wallaschek J 2008 Smart Mater. Struct. 17 035003
[9] Kim J, Jung Y C 2006 Journal of Acoustical Society of America 120 2017
[10] Marneffe B de, Preumont A 2008 Smart Mater. Struct. 17 035015
[11] Neubauer M, Wallaschek J 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1100
[12] Xu X R, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 物理学报 55 4292]
[13] Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414
[14] Kim J, Lee J 2002 J. Acoust. Soc. Am. 112 990
[15] Kim J, Choi J Y 2005 Smart Mater. Struct. 14 587
[16] Chang D Q, Liu. B L, Li X D 2010 J. Acoust. Soc. Am. 128 639
[17] Furukawa T, Ishida K, Fukada E 1979 J. Appl. Phys. 50 4904
[18] Mason W P 1964 Physical acoustics principles and methods, vol. 1, Part A, Academic Press New York and London 238–239
[19] Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric transducers and arrays (revised edition) (Peking University Press) 114—118 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵(修订版) (北京大学出版社) 第114-118页]
[20] He Z Y,Wang M 1996 Applied Acoustics 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]
[21] Ma L L, Wang R Q 2006 Technical Acoustics 25(3) 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25(3) 175]
-
[1] Moheimani S O R, Fleming A J,Behrens S 2003 Smart Mater. Struct. 12 49
[2] Hagood H W, Flotow A van 1994 Journal of Sound and Vibration 146 243
[3] Wu S Y 1996 Proc. SPIE 2720 259
[4] Niederberger D, Fleming A J, Moheimani S O R, Morari M 2004 Smart Mater. Struct. 13 1025
[5] Moheimani S O R 2004 IEEE Transactions on Control Systems Technology 12 484
[6] Guyomar D, Richard T, Richard C 2008 Journal of Intelligent Material Systems and Structure 19 791
[7] Ciminello M, Calabro A, Ameduri S, Concilio A 2008 Journal of Intelligent Material Systems and Structures 19 1089
[8] Neubauer M, Wallaschek J 2008 Smart Mater. Struct. 17 035003
[9] Kim J, Jung Y C 2006 Journal of Acoustical Society of America 120 2017
[10] Marneffe B de, Preumont A 2008 Smart Mater. Struct. 17 035015
[11] Neubauer M, Wallaschek J 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1100
[12] Xu X R, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 物理学报 55 4292]
[13] Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414
[14] Kim J, Lee J 2002 J. Acoust. Soc. Am. 112 990
[15] Kim J, Choi J Y 2005 Smart Mater. Struct. 14 587
[16] Chang D Q, Liu. B L, Li X D 2010 J. Acoust. Soc. Am. 128 639
[17] Furukawa T, Ishida K, Fukada E 1979 J. Appl. Phys. 50 4904
[18] Mason W P 1964 Physical acoustics principles and methods, vol. 1, Part A, Academic Press New York and London 238–239
[19] Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric transducers and arrays (revised edition) (Peking University Press) 114—118 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵(修订版) (北京大学出版社) 第114-118页]
[20] He Z Y,Wang M 1996 Applied Acoustics 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]
[21] Ma L L, Wang R Q 2006 Technical Acoustics 25(3) 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25(3) 175]
计量
- 文章访问数: 7888
- PDF下载量: 755
- 被引次数: 0