搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析

于利刚 李朝晖 王仁乾 马黎黎

引用本文:
Citation:

含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析

于利刚, 李朝晖, 王仁乾, 马黎黎

Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell

Yu Li-Gang, Li Zhao-Hui, Wang Ren-Qian, Ma Li-Li
PDF
导出引用
  • 水下吸声覆盖层对潜艇的隐身具有重要的意义, 因此得到了广泛的关注. 本文对含有玻璃微球的黏弹性复合材料覆盖层的水下吸声性能进行了理论分析. 采用等效参数法计算了玻璃微球的体积含量对复合材料的力学和声学性能的影响. 应用声波在多层介质中传播的一维模型, 计算了不同玻璃微球体积含量的单层复合材料覆盖层的吸声性能.结果表明, 增加玻璃微球的体积含量可以提高覆盖层的低频吸声性能, 但是其高频吸声性能降低.采用遗传算法对玻璃微球在覆盖层厚度方向上的体积含量分布进行优化. 优化的多层结构可以在一定的频带内改善覆盖层的表面与水的声阻抗匹配, 在保证覆盖层的高频吸声系数大于某一限值(0.7)的前提下, 提高其低频吸声性能.另外, 多层优化结构覆盖层不含宏观的空腔结构, 不影响覆盖层的耐压性能.其结构简单, 对制备工艺的要求不高.因此, 本文形成的理论方法适用于水下吸声覆盖层的设计.
    Underwater sound absorption coating is significant to the stealth of a submarine, so it attracts a lot of attention. Underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell was investigated theoretically. The mechanical and acoustic properties of the composites in response to the volume of the micro-spherical glass shell were analyzed by the effective parameters method. Sound absorption of a single layer composites coating containing different volume of micro-spherical glass shell was calculated by the one-dimensional model, in which sound propagates in multi-layer media. The calculated results show that the sound absorption at low frequencies can be promoted by increasing the volume of micro-spherical glass shell, but the sound absorption at high frequencies is depressed. The volume distribution of the micro-spherical glass shells across the thickness of the coating was optimized by the genetic algorithm. The optimal multi-layer structure can promote the sound absorption at low frequencies, and keep the sound absorption coefficients above a limited value (0.7) at high frequencies. The optimal multi-layer composite coating can work at high pressure since it does not contain hollow macro-structure. Its structure is simple, so the technique of its fabrication should not be complicated. The theoretical method achieved in this paper can be applied in the design of underwater sound absorption coating.
    [1]

    He Z Y, Wang M 1996 Appl. Acoust. 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]

    [2]

    Ma L L, Wang R Q 2006 Tech. Acoust. 25 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25 175]

    [3]

    Ivansson S M, 2006 J. Acoust. Soc. Am. 119 3558

    [4]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Phys. Lett. A 367 224

    [5]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [6]

    Ivansson S M 2008 J. Acoust. Soc. Am. 124 1974

    [7]

    Zhao H G, Liu Y Y, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 470]

    [8]

    Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D, Wei B C 2009 Chin. Phys. Lett. 26 106202

    [9]

    Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414

    [10]

    Philip B, Abraham J K, Varadan V K, Natarajan V, Jayakumari V G 2004 Smart Mater. Struct. 13 N99

    [11]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 物理学报 61 024301]

    [12]

    Wang X L 2007 J. Acoust. Soc. Am. 122 2626

    [13]

    Meyer E, Brendel K, Tamm K 1958 J. Acoust. Soc. Am. 30 1116

    [14]

    Gaunaurd G C, berall H 1978 J. Acoust. Soc. Am. 63 1699

    [15]

    Gaunaurd G C, berall H 1982 J. Acoust. Soc. Am. 71 282

    [16]

    Gaunaurd G C, Barlow J 1984 J. Acoust. Soc. Am. 75 23

    [17]

    Kerr F 1992 Int. J. Eng. Sci. 30 169

    [18]

    Cherkaoui M, Sabar H, Berveiller M 1994 J. Eng. Mater. Technol. 116 274

    [19]

    Baird A M, Kerr F H, Townend D J 1999 J. Acoust. Soc. Am. 105 1527

    [20]

    Haberman M R, Berthelot Y H, Jarzynski J 2002 J. Acoust. Soc. Am. 112 1937

    [21]

    Liang B, Zhu Z M, Cheng J C 2006 Chin. Phys. 15 412

    [22]

    Liang B, Zhu Z M, Cheng J C 2007 Chin. Phys. Lett. 24 1607

    [23]

    Liang B, Zhu Z M, Cheng J C 2007 Phys. Rev. E 75 016605

    [24]

    Qin B, Liang B, Zhu Z M, Cheng J C 2007 Acta Acoust. 32 110 (in Chinese) [秦波, 梁彬, 朱哲民, 程建春 2007 声学学报 32 110]

    [25]

    Folds D L, Loggins C D 1977 J. Acoust. Soc. Am. 62 1022

    [26]

    Tomas E Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 624

    [27]

    Stephen P K, Gordon H, Tomas E, Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 1314

  • [1]

    He Z Y, Wang M 1996 Appl. Acoust. 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]

    [2]

    Ma L L, Wang R Q 2006 Tech. Acoust. 25 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25 175]

    [3]

    Ivansson S M, 2006 J. Acoust. Soc. Am. 119 3558

    [4]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Phys. Lett. A 367 224

    [5]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [6]

    Ivansson S M 2008 J. Acoust. Soc. Am. 124 1974

    [7]

    Zhao H G, Liu Y Y, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 470]

    [8]

    Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D, Wei B C 2009 Chin. Phys. Lett. 26 106202

    [9]

    Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414

    [10]

    Philip B, Abraham J K, Varadan V K, Natarajan V, Jayakumari V G 2004 Smart Mater. Struct. 13 N99

    [11]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 物理学报 61 024301]

    [12]

    Wang X L 2007 J. Acoust. Soc. Am. 122 2626

    [13]

    Meyer E, Brendel K, Tamm K 1958 J. Acoust. Soc. Am. 30 1116

    [14]

    Gaunaurd G C, berall H 1978 J. Acoust. Soc. Am. 63 1699

    [15]

    Gaunaurd G C, berall H 1982 J. Acoust. Soc. Am. 71 282

    [16]

    Gaunaurd G C, Barlow J 1984 J. Acoust. Soc. Am. 75 23

    [17]

    Kerr F 1992 Int. J. Eng. Sci. 30 169

    [18]

    Cherkaoui M, Sabar H, Berveiller M 1994 J. Eng. Mater. Technol. 116 274

    [19]

    Baird A M, Kerr F H, Townend D J 1999 J. Acoust. Soc. Am. 105 1527

    [20]

    Haberman M R, Berthelot Y H, Jarzynski J 2002 J. Acoust. Soc. Am. 112 1937

    [21]

    Liang B, Zhu Z M, Cheng J C 2006 Chin. Phys. 15 412

    [22]

    Liang B, Zhu Z M, Cheng J C 2007 Chin. Phys. Lett. 24 1607

    [23]

    Liang B, Zhu Z M, Cheng J C 2007 Phys. Rev. E 75 016605

    [24]

    Qin B, Liang B, Zhu Z M, Cheng J C 2007 Acta Acoust. 32 110 (in Chinese) [秦波, 梁彬, 朱哲民, 程建春 2007 声学学报 32 110]

    [25]

    Folds D L, Loggins C D 1977 J. Acoust. Soc. Am. 62 1022

    [26]

    Tomas E Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 624

    [27]

    Stephen P K, Gordon H, Tomas E, Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 1314

  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究. 物理学报, 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [3] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [4] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [5] 胡晓琴, 谢国锋. 遗传算法优化BaTiO3壳模型势参数. 物理学报, 2011, 60(1): 013401. doi: 10.7498/aps.60.013401
    [6] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配. 物理学报, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [7] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [8] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [9] 宋丹, 张晓林. 基于不动点理论的多系统兼容接收机频点选择问题的研究与遗传算法实现. 物理学报, 2010, 59(9): 6697-6705. doi: 10.7498/aps.59.6697
    [10] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [11] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [12] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究. 物理学报, 2007, 56(7): 3759-3765. doi: 10.7498/aps.56.3759
    [13] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [14] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [15] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [16] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [17] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [18] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [19] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [20] 戴栋, 马西奎, 李富才, 尤勇. 一种基于遗传算法的混沌系统参数估计方法. 物理学报, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
计量
  • 文章访问数:  5953
  • PDF下载量:  956
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-28
  • 修回日期:  2012-09-15
  • 刊出日期:  2013-03-05

/

返回文章
返回