搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2在Al7-团簇解离吸附的理论研究

李文杰 杨慧慧 陈宏善

引用本文:
Citation:

H2在Al7-团簇解离吸附的理论研究

李文杰, 杨慧慧, 陈宏善

Dissociation of H2 on Al7- cluster studied by ab initio calculations

Li Wen-Jie, Yang Hui-Hui, Chen Hong-Shan
PDF
导出引用
  • 利用高精度从头计算方法研究了H2分子在Al7-阴离子团簇上的吸附及解离过程, 确定了分子吸附及解离吸附的稳定结构,并分析了各结构的光电子能谱. 计算表明H2在Al7-上为弱的物理吸附,吸附能约为0.02 eV;解离过程的能垒约为0.75 eV. 对团簇及解离吸附结构的态密度与实验得到的光电子能谱的比较表明二者能够很好地符合, 确定H2与激光烧蚀产生的团簇直接反应时能在Al7-上发生解离.
    With the accurate ab initio method, the adsorption and dissociation process of H2 molecule on Al7- cluster anion are investigated. The stable structures of molecular adsorption and dissociative adsorption are confirmed. The photoelectron spectra of different structures are further analyzed. The calculations indicate that the adsorption of H2 on Al7- is weak physical adsorption with the adsorption energy about 0.02 eV. The investigation of the dissociation process shows that the energy barrier of dissociation is about 0.75 eV. The densities of states of the Al7- cluster and the dissociative adsorption complex Al7H2- are in good agreement with those obtained by the photoelectron spectroscopy. It suggests that H2 can be dissociated when it is absorbed on Al7- anions produced by laser ablation.
    • 基金项目: 国家自然科学基金(批准号: 11164024)和西北师范大学科技创新工程 (批准号: NWNU-KJCXGC03-62)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11164024), and the Northwest Normal University (Grant No. NWNU-KJCXGC03-62).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Zhou J J, Chen Y G, Wu Z L, Zhen X, Fang Y C, Gao T 2009 Acta Phys. Sin. 58 4853 (in Chinese) [周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛 2009 物理学报 58 4853]

    [3]

    Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N 2007 Chem. Rev. 107 3904

    [4]

    Jayashree R S, Mitchell M, Natarajan D, Markoski L J, Kenis P J A 2007 Langmuir 23 6871

    [5]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3992

    [6]

    Navarro R M, Peña M A, Fierro J L G 2007 Chem. Rev. 107 3952

    [7]

    Cortright R D, Davda R R, Dumesic J A 2002 Nature 418 964

    [8]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [9]

    Kodama T, Gokon N 2007 Chem. Rev. 107 4048

    [10]

    Nocera D G 2012 Accounts of Chemical Research 45 767

    [11]

    Yilanci A, Dincer I, Ozturk H K 2009 Progress in Energy and Combustion Science 35 231

    [12]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem., Sect. A 105 21

    [13]

    Schlapbach L, Zttel A 2001 Nature 414 353

    [14]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [15]

    Dai W, Luo J S, Tang Y J, Wang Z Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [16]

    Struzhkin V V, Militzer B, Mao W L, Mao Ho-k, Hemley R J 2007 Chem. Rev. 107 4133

    [17]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Int. Ed. 44 4670

    [18]

    Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111

    [19]

    Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 物理学报 59 4178]

    [20]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 物理学报 58 8077]

    [21]

    Ruan W, Xie An-D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104

    [22]

    Cox D M, Trevor D J, Whetten R L, Rohlfing E A, Kaldor A 1986 J. Chem. Phys. 84 4651

    [23]

    Cox D M, Trevor D J, Whetten R L, Kaldor A 1988 J. Phys. Chem. 92 421

    [24]

    Upton T H 1986 Phys. Rev. Lett. 56 2168

    [25]

    Kawamura H, Kumar V, Sun Q, Kawazoe Y 2001 Phys. Rev. B 65 045406

    [26]

    Pino I, Kroes G J, van Hemert M C 2010 J. Chem. Phys. 133 184304

    [27]

    Cui L F, Li X, Wang L S 2006 J. Chem. Phys. 124 054308

    [28]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [29]

    McDouall J J, Peasley K, Robb M A 1988 Chem. Phys. Lett. 148 183

    [30]

    Pople J A, Head-Gordon M, Raghavachari K 1987 J. Chem. Phys. 87 5968

    [31]

    Frisch M J, Trucks G W, Schlegel H B 2004 Gaussian 03. Revision E.01. Wallingford CT: Gaussian Inc.

    [32]

    Sun J, Lu W C, Wang H, Li Z S, Sun C C 2006 J. Phys. Chem. A 110 2729

    [33]

    Chen M X, Yan X H 2007 Chemical Physics Letters 439 270

    [34]

    Rao B K, Jena P 1999 J. Chem. Phys. 111 1890

    [35]

    Harrington J E, Weisshaar J C 1990 J. Chem. Phys. 93 854

    [36]

    Fu Zh W, Lemire G W, Bishea G A, Morse M D 1990 J. Chem. Phys. 93 8420

  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Zhou J J, Chen Y G, Wu Z L, Zhen X, Fang Y C, Gao T 2009 Acta Phys. Sin. 58 4853 (in Chinese) [周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛 2009 物理学报 58 4853]

    [3]

    Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N 2007 Chem. Rev. 107 3904

    [4]

    Jayashree R S, Mitchell M, Natarajan D, Markoski L J, Kenis P J A 2007 Langmuir 23 6871

    [5]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3992

    [6]

    Navarro R M, Peña M A, Fierro J L G 2007 Chem. Rev. 107 3952

    [7]

    Cortright R D, Davda R R, Dumesic J A 2002 Nature 418 964

    [8]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [9]

    Kodama T, Gokon N 2007 Chem. Rev. 107 4048

    [10]

    Nocera D G 2012 Accounts of Chemical Research 45 767

    [11]

    Yilanci A, Dincer I, Ozturk H K 2009 Progress in Energy and Combustion Science 35 231

    [12]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem., Sect. A 105 21

    [13]

    Schlapbach L, Zttel A 2001 Nature 414 353

    [14]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [15]

    Dai W, Luo J S, Tang Y J, Wang Z Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [16]

    Struzhkin V V, Militzer B, Mao W L, Mao Ho-k, Hemley R J 2007 Chem. Rev. 107 4133

    [17]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Int. Ed. 44 4670

    [18]

    Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111

    [19]

    Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 物理学报 59 4178]

    [20]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 物理学报 58 8077]

    [21]

    Ruan W, Xie An-D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104

    [22]

    Cox D M, Trevor D J, Whetten R L, Rohlfing E A, Kaldor A 1986 J. Chem. Phys. 84 4651

    [23]

    Cox D M, Trevor D J, Whetten R L, Kaldor A 1988 J. Phys. Chem. 92 421

    [24]

    Upton T H 1986 Phys. Rev. Lett. 56 2168

    [25]

    Kawamura H, Kumar V, Sun Q, Kawazoe Y 2001 Phys. Rev. B 65 045406

    [26]

    Pino I, Kroes G J, van Hemert M C 2010 J. Chem. Phys. 133 184304

    [27]

    Cui L F, Li X, Wang L S 2006 J. Chem. Phys. 124 054308

    [28]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [29]

    McDouall J J, Peasley K, Robb M A 1988 Chem. Phys. Lett. 148 183

    [30]

    Pople J A, Head-Gordon M, Raghavachari K 1987 J. Chem. Phys. 87 5968

    [31]

    Frisch M J, Trucks G W, Schlegel H B 2004 Gaussian 03. Revision E.01. Wallingford CT: Gaussian Inc.

    [32]

    Sun J, Lu W C, Wang H, Li Z S, Sun C C 2006 J. Phys. Chem. A 110 2729

    [33]

    Chen M X, Yan X H 2007 Chemical Physics Letters 439 270

    [34]

    Rao B K, Jena P 1999 J. Chem. Phys. 111 1890

    [35]

    Harrington J E, Weisshaar J C 1990 J. Chem. Phys. 93 854

    [36]

    Fu Zh W, Lemire G W, Bishea G A, Morse M D 1990 J. Chem. Phys. 93 8420

  • [1] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [2] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究. 物理学报, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [3] 戴伟, 肖明, 李志浩, 唐永建. H2的自由扩散和吸附状态的对比研究. 物理学报, 2012, 61(1): 016801. doi: 10.7498/aps.61.016801
    [4] 陈宏善, 陈华君. H2在MgO团簇吸附的从头计算研究. 物理学报, 2011, 60(7): 073601. doi: 10.7498/aps.60.073601
    [5] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [6] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质. 物理学报, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [7] 车晓芳, 陈宏善. (H2O)6的稳定结构及异构过程研究. 物理学报, 2011, 60(4): 043601. doi: 10.7498/aps.60.043601
    [8] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [9] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [10] 杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和. BeH, H2和BeH2的分子结构和势能函数. 物理学报, 2009, 58(1): 178-184. doi: 10.7498/aps.58.178
    [11] 吴 勇, 刘 玲, 王建国. O3+与H2碰撞中非解离电荷转移过程的全量子计算. 物理学报, 2008, 57(2): 947-956. doi: 10.7498/aps.57.947
    [12] 林秋宝, 李仁全, 文玉华, 朱梓忠. Wn(n=3—27)原子团簇结构的第一性原理计算. 物理学报, 2008, 57(1): 181-185. doi: 10.7498/aps.57.181
    [13] 李海铭, 巫 翔, 李 炯, 陈栋梁, 储旺盛, 吴自玉. 高压下LiF和NaF的结构稳定性及其电子和光学性质的第一性原理研究. 物理学报, 2007, 56(12): 7201-7206. doi: 10.7498/aps.56.7201
    [14] 王晓春, 林秋宝, 李仁全, 朱梓忠. 二维全同Nb4团簇在Cu(100)表面的结构稳定性和电子性质. 物理学报, 2007, 56(5): 2813-2820. doi: 10.7498/aps.56.2813
    [15] 陈鲁倬, 王晓春, 文玉华, 朱梓忠. Nb二维原子薄片中的Jahn-Teller效应. 物理学报, 2007, 56(5): 2920-2925. doi: 10.7498/aps.56.2920
    [16] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究. 物理学报, 2005, 54(4): 1702-1706. doi: 10.7498/aps.54.1702
    [17] 沈汉鑫, 蔡娜丽, 文玉华, 朱梓忠. Nb原子链的结构稳定性和电子性质. 物理学报, 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
    [18] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的Li嵌入电压轮廓曲线从头计算. 物理学报, 2004, 53(11): 3868-3872. doi: 10.7498/aps.53.3868
    [19] 田春玲, 刘福生, 蔡灵仓, 经福谦. 四体相互作用对固氦压缩特性的贡献. 物理学报, 2003, 52(5): 1218-1221. doi: 10.7498/aps.52.1218
    [20] 祝生祥, 李 锐, 杨修文, 薛春荣. PuH2分子电子结构的DVM研究. 物理学报, 2003, 52(1): 67-71. doi: 10.7498/aps.52.67
计量
  • 文章访问数:  4209
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-05
  • 修回日期:  2012-10-23
  • 刊出日期:  2013-03-05

H2在Al7-团簇解离吸附的理论研究

  • 1. 西北师范大学物理与电子工程学院,甘肃省原子分子物理与功能材料重点实验室, 兰州 730070
    基金项目: 国家自然科学基金(批准号: 11164024)和西北师范大学科技创新工程 (批准号: NWNU-KJCXGC03-62)资助的课题.

摘要: 利用高精度从头计算方法研究了H2分子在Al7-阴离子团簇上的吸附及解离过程, 确定了分子吸附及解离吸附的稳定结构,并分析了各结构的光电子能谱. 计算表明H2在Al7-上为弱的物理吸附,吸附能约为0.02 eV;解离过程的能垒约为0.75 eV. 对团簇及解离吸附结构的态密度与实验得到的光电子能谱的比较表明二者能够很好地符合, 确定H2与激光烧蚀产生的团簇直接反应时能在Al7-上发生解离.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回