搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散

罗质华

引用本文:
Citation:

双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散

罗质华

Non-classical energy state and quantum tunnling coherence dissipation for the two-state system with the spin coupled to the lattice phonon

Luo Zhi-Hua
PDF
导出引用
  • 采用关联表象变分波函数方案, 介入三个非经典关联效应, 求解有限温度双能态自旋-晶格声子耦合量子隧道系统的非经典态, 着重研究化解由于粒子自旋-单声子相互作用引起的量子涨落导致双能态系统的退相干性量子耗散. 这三个非经典关联效应是: 1) 声子位移-粒子自旋 (σz)间强非绝热关联; 2) 声子压缩态效应及其伴随发生的单声子相干态-声子压缩态两过程相干效应; 3) 由关联表象导致的声子位移(UD)与声子压缩(US)的表象关联非绝热修正. 结果表明: 由于引入粒子自旋-双声子相互作用, 大幅度地增强了声子场压缩态, 特别是更进一步极大幅度地增强了非经典压缩-相干态效应. 因此, 由粒子自旋-单声子相互作用产生的Debye-Walle相干弹性散射效应导致量子隧道项(-Δ0σx)的强烈指数衰减及其伴随严重的量子相干损失的极大幅度的抑制, 并且自旋-晶格声子耦合量子隧道系统的非经典态能量大幅度降低.
    Including the spin-two-phonon interaction, for the two-state tunneling system with the spin coupled to the lattice phonon (i.e., spin-lattice phonon coupling model) at a finite temperature, the non-classical energy state and the quantum coherence dissipation are studied by the expansion approach of the correlated squeezed-coherent state of phonon. To restrain the quantum coherence loss caused by the Debye-Waller’s coherent scattering of the particle spin by the coherent phonons, the non-classical correlation effects are used in our research with the special consideration of the spin-two-phonon interaction, i.e., 1) the particle spin-displaced phonon state correlation; 2) the process coherence between the one-phonon coherent state and the phonon squeezed state which originates from the squeezed-coherent state of phonon; 3) the renormalization of the phonon displacement. We find the new phenomena that the phonon squeezed state is enhanced significantly due to the particle spin-two phonon interaction, in particular, at the same time the effects of the squeezed coherent state and the representation correlation will be essentially increased. Therefore, the striking decline in the quantum tunneling (Δ0σx) and the serious quantum coherence loss by the Debye-Waller coherent scattering are restricted more noticeably, as a result, the energy of the non-classical state for the two-level system with spin coupled to the lattice phonon is much lower.
    • 基金项目: 国家自然科学基金(批准号: 10574163)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10574163).
    [1]

    Leggett A J, Chakravarty A T, Dorsey A T 1987 Rev. Mod. Phys. 59 1

    [2]

    Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientipic)

    [3]

    Schleich W P 2001 Quantum Optics in Phase Space (Belin: WILEY-VCH Verlag Belin GmbH) p532

    [4]

    Orszag M 2000 Quantum Qptics (Belin Heidelbeg: Springer-Verlag) p106

    [5]

    Mahan G D 1981 Many-Particle Physics (New York: Plenum Press) pp524-528

    [6]

    Yuan X L, Shi Y, Yang H G, Pu H M, Wu J, Zhao B, Zhang R, Zheng Y K 2000 Acta Phys. Sin. 49 2037 (in Chinese) [袁晓丽, 施毅, 杨红官, 卜惠明, 吴军, 赵波, 张荣, 郑有科 2000 物理学报 49 2037]

    [7]

    Wang T H, Li H W, Zhou J M 2001 Chin. Phys. 10 844

    [8]

    Liu M, Wang Z O, He Y L, Jiang X L 1998 Acta Phys. Sin. 47 699 (in Chinese) [刘明, 王子欧, 何宇亮, 江兴流 1998 物理学报 47 699]

    [9]

    Zheng H 2004 J. Eur. Phys. B 38 559

    [10]

    Wu Z J, Zhu K D, Yuan X Z, Zheng H 2005 Acta Phys. Sin. 54 3346 (in Chinese) [吴卓杰, 朱卡的, 袁晓忠, 郑杭 2005 物理学报 54 3346]

    [11]

    Hartman U, Wilhelm F K 2004 Phys. Rev. B 69 161309

    [12]

    Brandes T, Kramer B 1999 Phys. Rev. Lett. 83 3021

    [13]

    Aguado R, Brandes T 2004 Phys. Rev. Lett. 92 206601

    [14]

    Brandes T, Aguado R, Platero G 2004 Phys. Rev. B 69 205326

    [15]

    Chen H, Zhang Y M 1985 Phys. Rev. B 32 4410

    [16]

    Sassetti M, Weiss U 1990 Phys, Rev. Lett. 65 2262

    [17]

    Sassetti M, Weiss U 1990 Phys, Rev. B 41 5383

    [18]

    Chen H, Zhang Y M, Wu X 1989 Phys. Rev. B 39 546

    [19]

    Shi Y L, Chen H, Wu X 1993 Acta Phys. Sin. 42 1162 (in Chinese) [石云龙, 陈鸿, 吴翔 1993 物理学报 42 1162]

    [20]

    Lo C F, Sollie R 1991 Phys. Rev. B 44 5013

    [21]

    Chakravarty S, Rudnick J 1995 Phys. Rev. Lett. 75 501

    [22]

    Wurger A 1997 Phys. Rev. Lett. 78 1759

    [23]

    Volker K 1998 Phys. Rev. B 58 1862

    [24]

    Costi T A, Kieffer C 1996 Phys. Rev. Lett. 76 1683

    [25]

    Costi T A 1998 Phys. Rev. Lett. 80 1038

    [26]

    Egger R, Mak C H 1994 Phys. Rev. B 50 15210

    [27]

    Stoskburger J T, Mak C H 1998 Phys. Rev. Lett. 80 2657

    [28]

    Silbey R, Harris R A 1984 J. Chem Phys. 80 2615

    [29]

    Hartmann L, Goychak I, Grifonim, Hänggi P 2000 Phys. Rev. E 61 4687

    [30]

    Lehle H, Ankerhold J 2004 J. Chem. Phys. 120 1436

    [31]

    Zhang M, Zhang S, Pollak E 2004 J. Chem. Phys. 120 9630

    [32]

    Stock G, Thoss M 2005 Adv. Chem. Phys. 131 243

    [33]

    Marten-Fierro E, Pollak E 2007 J. Chem. Phys. 126 164108

    [34]

    Mhlbacher L, Egger R 2003 J. Chem. Phys. 118 179

    [35]

    Wang H, Thoss M, Miller W 2001 J. Chem. Phys. 115 2979

    [36]

    Bulla R, Tong N G, Vojta M 2003 Phys. Rev. Lett. 91 170601

    [37]

    Anders F B, Schiller A 2006 Phys. Rev. B 74 245113

    [38]

    Thoss M, Wang H 2006 Chem. Phys. 322 210

    [39]

    Craig I R, Wang H, Thoss M 2007 J. Chem. Phys. 127 144503

    [40]

    Wang H, Thoss M 2008 New J. Phys. 10 115005

    [41]

    Larson J 2007 Phys. Scr. 76 146

    [42]

    Larson J, Moya-Cessa H 2008 Phys. Scr. 77 065704

    [43]

    Irish E K 2007 Phys. Rev. Lett. 99 173601

    [44]

    Liu T, Wang K L, Feng M 2007 J. Phys. B 40 1967

    [45]

    Zheng H, Zhu S Y, Zubairy M S 2008 Phys. Rev. Lett. 101 200404

    [46]

    Liu T, Wang K L, Feng M 2009 EPL 86 54003

    [47]

    Akhiezer A I, Bargakhter V G, Peletminskii S V 1968 Spin Wave (North-Halland: Amsterdam)

    [48]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p1042-1047

    [49]

    Majernikava E, Koval J 1998 Physica 37 23

  • [1]

    Leggett A J, Chakravarty A T, Dorsey A T 1987 Rev. Mod. Phys. 59 1

    [2]

    Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientipic)

    [3]

    Schleich W P 2001 Quantum Optics in Phase Space (Belin: WILEY-VCH Verlag Belin GmbH) p532

    [4]

    Orszag M 2000 Quantum Qptics (Belin Heidelbeg: Springer-Verlag) p106

    [5]

    Mahan G D 1981 Many-Particle Physics (New York: Plenum Press) pp524-528

    [6]

    Yuan X L, Shi Y, Yang H G, Pu H M, Wu J, Zhao B, Zhang R, Zheng Y K 2000 Acta Phys. Sin. 49 2037 (in Chinese) [袁晓丽, 施毅, 杨红官, 卜惠明, 吴军, 赵波, 张荣, 郑有科 2000 物理学报 49 2037]

    [7]

    Wang T H, Li H W, Zhou J M 2001 Chin. Phys. 10 844

    [8]

    Liu M, Wang Z O, He Y L, Jiang X L 1998 Acta Phys. Sin. 47 699 (in Chinese) [刘明, 王子欧, 何宇亮, 江兴流 1998 物理学报 47 699]

    [9]

    Zheng H 2004 J. Eur. Phys. B 38 559

    [10]

    Wu Z J, Zhu K D, Yuan X Z, Zheng H 2005 Acta Phys. Sin. 54 3346 (in Chinese) [吴卓杰, 朱卡的, 袁晓忠, 郑杭 2005 物理学报 54 3346]

    [11]

    Hartman U, Wilhelm F K 2004 Phys. Rev. B 69 161309

    [12]

    Brandes T, Kramer B 1999 Phys. Rev. Lett. 83 3021

    [13]

    Aguado R, Brandes T 2004 Phys. Rev. Lett. 92 206601

    [14]

    Brandes T, Aguado R, Platero G 2004 Phys. Rev. B 69 205326

    [15]

    Chen H, Zhang Y M 1985 Phys. Rev. B 32 4410

    [16]

    Sassetti M, Weiss U 1990 Phys, Rev. Lett. 65 2262

    [17]

    Sassetti M, Weiss U 1990 Phys, Rev. B 41 5383

    [18]

    Chen H, Zhang Y M, Wu X 1989 Phys. Rev. B 39 546

    [19]

    Shi Y L, Chen H, Wu X 1993 Acta Phys. Sin. 42 1162 (in Chinese) [石云龙, 陈鸿, 吴翔 1993 物理学报 42 1162]

    [20]

    Lo C F, Sollie R 1991 Phys. Rev. B 44 5013

    [21]

    Chakravarty S, Rudnick J 1995 Phys. Rev. Lett. 75 501

    [22]

    Wurger A 1997 Phys. Rev. Lett. 78 1759

    [23]

    Volker K 1998 Phys. Rev. B 58 1862

    [24]

    Costi T A, Kieffer C 1996 Phys. Rev. Lett. 76 1683

    [25]

    Costi T A 1998 Phys. Rev. Lett. 80 1038

    [26]

    Egger R, Mak C H 1994 Phys. Rev. B 50 15210

    [27]

    Stoskburger J T, Mak C H 1998 Phys. Rev. Lett. 80 2657

    [28]

    Silbey R, Harris R A 1984 J. Chem Phys. 80 2615

    [29]

    Hartmann L, Goychak I, Grifonim, Hänggi P 2000 Phys. Rev. E 61 4687

    [30]

    Lehle H, Ankerhold J 2004 J. Chem. Phys. 120 1436

    [31]

    Zhang M, Zhang S, Pollak E 2004 J. Chem. Phys. 120 9630

    [32]

    Stock G, Thoss M 2005 Adv. Chem. Phys. 131 243

    [33]

    Marten-Fierro E, Pollak E 2007 J. Chem. Phys. 126 164108

    [34]

    Mhlbacher L, Egger R 2003 J. Chem. Phys. 118 179

    [35]

    Wang H, Thoss M, Miller W 2001 J. Chem. Phys. 115 2979

    [36]

    Bulla R, Tong N G, Vojta M 2003 Phys. Rev. Lett. 91 170601

    [37]

    Anders F B, Schiller A 2006 Phys. Rev. B 74 245113

    [38]

    Thoss M, Wang H 2006 Chem. Phys. 322 210

    [39]

    Craig I R, Wang H, Thoss M 2007 J. Chem. Phys. 127 144503

    [40]

    Wang H, Thoss M 2008 New J. Phys. 10 115005

    [41]

    Larson J 2007 Phys. Scr. 76 146

    [42]

    Larson J, Moya-Cessa H 2008 Phys. Scr. 77 065704

    [43]

    Irish E K 2007 Phys. Rev. Lett. 99 173601

    [44]

    Liu T, Wang K L, Feng M 2007 J. Phys. B 40 1967

    [45]

    Zheng H, Zhu S Y, Zubairy M S 2008 Phys. Rev. Lett. 101 200404

    [46]

    Liu T, Wang K L, Feng M 2009 EPL 86 54003

    [47]

    Akhiezer A I, Bargakhter V G, Peletminskii S V 1968 Spin Wave (North-Halland: Amsterdam)

    [48]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p1042-1047

    [49]

    Majernikava E, Koval J 1998 Physica 37 23

  • [1] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性. 物理学报, 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [2] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流. 物理学报, 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [3] 罗质华, 梁国栋. 一维介观环中持续电流的电子-声子相互作用非经典效应. 物理学报, 2011, 60(3): 037303. doi: 10.7498/aps.60.037303
    [4] 张晓燕, 王继锁. 相空间中对称的纠缠相干态及其非经典特性. 物理学报, 2011, 60(9): 090304. doi: 10.7498/aps.60.090304
    [5] 陈子翃, 廖长庚, 罗成立. Λ型三能级原子与对相干态光场共振作用中的非经典性质. 物理学报, 2010, 59(9): 6152-6158. doi: 10.7498/aps.59.6152
    [6] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干. 物理学报, 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [7] 郑乃清. 双模SU(2)相干态场与一个Λ型三能级原子共振相互作用的光场非经典性质. 物理学报, 2010, 59(4): 2485-2492. doi: 10.7498/aps.59.2485
    [8] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [9] 孟祥国, 王继锁. 有限维奇偶对相干态的非经典性质. 物理学报, 2007, 56(8): 4578-4584. doi: 10.7498/aps.56.4578
    [10] 孟祥国, 王继锁. 新的奇偶非线性相干态及其非经典性质. 物理学报, 2007, 56(4): 2154-2159. doi: 10.7498/aps.56.2154
    [11] 夏云杰, 高德营. 纠缠相干态及其非经典特性. 物理学报, 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [12] 嵇英华. 压缩偶相干态的制备及其非经典特性. 物理学报, 2003, 52(2): 332-336. doi: 10.7498/aps.52.332
    [13] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [14] 汪仲清. 奇偶q-变形相干态的高阶压缩效应. 物理学报, 2001, 50(4): 690-692. doi: 10.7498/aps.50.690
    [15] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [16] 郝三如, 王麓雅. 用外加驱动场压缩有热槽相互作用二态量子系统的退相干性. 物理学报, 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
    [17] 路 洪, 郭光灿. 叠加激发相干态的非经典性质. 物理学报, 1999, 48(9): 1644-1649. doi: 10.7498/aps.48.1644
    [18] 于肇贤, 王继锁, 刘业厚. 非简谐振子广义奇偶相干态的高阶压缩效应及反聚束效应. 物理学报, 1997, 46(9): 1693-1698. doi: 10.7498/aps.46.1693
    [19] 朱从旭, 王发伯, 匡乐满. 关于奇偶q相干态的非经典特性. 物理学报, 1994, 43(8): 1262-1267. doi: 10.7498/aps.43.1262
    [20] 姚德民, 郭光灿. 非经典态光场的判据. 物理学报, 1988, 37(3): 463-469. doi: 10.7498/aps.37.463
计量
  • 文章访问数:  3292
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-31
  • 修回日期:  2013-07-03
  • 刊出日期:  2013-10-05

双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散

  • 1. 广东第二师范学院物理系, 广州 510303
    基金项目: 国家自然科学基金(批准号: 10574163)资助的课题.

摘要: 采用关联表象变分波函数方案, 介入三个非经典关联效应, 求解有限温度双能态自旋-晶格声子耦合量子隧道系统的非经典态, 着重研究化解由于粒子自旋-单声子相互作用引起的量子涨落导致双能态系统的退相干性量子耗散. 这三个非经典关联效应是: 1) 声子位移-粒子自旋 (σz)间强非绝热关联; 2) 声子压缩态效应及其伴随发生的单声子相干态-声子压缩态两过程相干效应; 3) 由关联表象导致的声子位移(UD)与声子压缩(US)的表象关联非绝热修正. 结果表明: 由于引入粒子自旋-双声子相互作用, 大幅度地增强了声子场压缩态, 特别是更进一步极大幅度地增强了非经典压缩-相干态效应. 因此, 由粒子自旋-单声子相互作用产生的Debye-Walle相干弹性散射效应导致量子隧道项(-Δ0σx)的强烈指数衰减及其伴随严重的量子相干损失的极大幅度的抑制, 并且自旋-晶格声子耦合量子隧道系统的非经典态能量大幅度降低.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回