搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛宝石激光抽运的被动锁模Tm:YAG陶瓷激光实验研究

詹敏杰 邹育婉 林清峰 王兆华 韩海年 吕亮 魏志义 章建 唐定远

引用本文:
Citation:

钛宝石激光抽运的被动锁模Tm:YAG陶瓷激光实验研究

詹敏杰, 邹育婉, 林清峰, 王兆华, 韩海年, 吕亮, 魏志义, 章建, 唐定远

Ti:sapphire pumped passively mode-locked Tm:YAG ceramic laser

Zhan Min-Jie, Zou Yu-Wan, Lin Qing-Feng, Wang Zhao-Hua, Han Hai-Nian, Lü Liang, Wei Zhi-Yi, Zhang Jian, Tang Ding-Yuan
PDF
导出引用
  • 本文采用连续钛宝石激光作抽运,掺杂浓度为6 at.%、长度为2.7 mm的Tm:YAG陶瓷作增益介质,通过引入半导体饱和吸收体获得了稳定的被动锁模运转. 实验中获得的激光锁模功率为116.5 mW,中心波长为2007 nm,重复频率为109 MHz,通过自行搭建的腔外非共线强度自相关测量得到的脉冲宽度是55 ps.
    A passively mode-locked Tm:YAG ceramic laser was demonstrated. Employing a 6 at.% Tm3+-doped sample with a length of 2.7 mm, we have realized stable mode-locked pulses with a repetition rate of 109 MHz by a semiconductor saturable absorber. A maximum output power of 116.5 mW was obtained at the central wavelength of 2007 nm. The corresponding pulse duration was determined to be 55 ps by a self-built noncollinear intensity auto-correlation setup. It is shown that Tm:YAG ceramics are excellent laser materials which can be used in ultrafast lasers with high-power and high-efficiency output.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB821304;2013CB922402)和国家自然科学基金(批准号:60808007,10804128)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB821304, 2013CB922402), and the National Natural Science Foundation of China (Grant Nos. 60808007, 10804128).
    [1]

    Lagatsky A A, Fusari F, Calvez S, Gupta J A, Kisel V E, Kuleshov N V, Brown C T A, Dawson M D, Sibbett W 2009 Opt. Lett. 34 2587

    [2]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172

    [3]

    Lagatsky A A, Calvez S, Gupta J A, Kisel V E, Kuleshov N V, Brown C T A, Dawson M D, Sibbett W 2011 Optics Express 19 9995

    [4]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A, Sibbett W 2010 Opt. Lett. 35 3027

    [5]

    Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguil M, Daz F 2009 Optics Express 17 11007

    [6]

    Yang K, Bromberger H, Ruf H, Schfer H, Neuhaus J, Dekorsy T, Grimm C V, Helm M, Biermann K, Knzel H 2010 Optics Express 18 6537

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y 2012 Opt. Lett. 37 1376

    [8]

    Lagatsky A A, Koopmann P, Fuhrberg P, Huber G, Brown C T A, Sibbett W 2012 Opt. Lett. 37 437

    [9]

    Schmidt A, Koopmann P, Huber G, Fuhrberg P, Choi S Y, Yeom D, Rotermund F, Petrov V, Griebner U 2012 Optics Express 20 5313

    [10]

    Coluccelli N, Galzerano G, Gatti D, Lieto A D, Tonelli M, Laporta P 2010 Applied Physics B: Lasers and Optics 101 75

    [11]

    Coluccelli N, Lagatsky A, Lieto A D, Tonelli M, Galzerano G, Sibbett W, Laporta P 2011 Opt. Lett. 36 3209

    [12]

    Sato A, Asai K, Itabe T 1998 Appl. Opt. 37 6395

    [13]

    Stoneman R C, Efficient L E 1990 Opt. Lett. 15 486

    [14]

    Ueda K 2007 3rd Laser Ceramic Symposium Paris, October, 2007

    [15]

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050 (in Chinese) [杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 物理学报 58 8050]

    [16]

    Cheng X J, Xu J Q, Zhang W X, Jiang B X, Pan Y B 2009 Chin. Phys. Lett. 26 074204

    [17]

    Zhang S Y, Wang M J, Xu L, Wang Y, Tang Y L, Cheng X J, Chen W B, Xu J Q, Jiang B X, Pan Y B 2011 Opt. Express 19 727

    [18]

    Ma Q L, Bo Y, Zong N, Pan Y B, Peng Q J, Cui D F, Xu Z Y 2011 Optics Communications 284 1645

    [19]

    Gao W L, Ma J, Xie G Q, Zhang J, Luo D W, Yang H, Tang D Y, Ma J, Yuan P, Qian L J 2012 Opt. Lett. 37 1076

    [20]

    Yao B Q, Yu X, Ju Y L, Liu W B, Jiang B X, Pan Y B 2013 Chin. Phys. Lett. 30 024210

    [21]

    Zou Y W, Zhang Y D, Zhong X, Wei Z Y, Zhang W X, Jiang B X, Pan Y B 2010 Chin. Phys. Lett. 27 074213

    [22]

    Honninger C, Paschotta R, Morier G F, Moser M, Keller U 1999 J. Opt. Soc. Am. B 16 46

  • [1]

    Lagatsky A A, Fusari F, Calvez S, Gupta J A, Kisel V E, Kuleshov N V, Brown C T A, Dawson M D, Sibbett W 2009 Opt. Lett. 34 2587

    [2]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172

    [3]

    Lagatsky A A, Calvez S, Gupta J A, Kisel V E, Kuleshov N V, Brown C T A, Dawson M D, Sibbett W 2011 Optics Express 19 9995

    [4]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S, Dawson M D, Gupta J A, Brown C T A, Sibbett W 2010 Opt. Lett. 35 3027

    [5]

    Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguil M, Daz F 2009 Optics Express 17 11007

    [6]

    Yang K, Bromberger H, Ruf H, Schfer H, Neuhaus J, Dekorsy T, Grimm C V, Helm M, Biermann K, Knzel H 2010 Optics Express 18 6537

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y 2012 Opt. Lett. 37 1376

    [8]

    Lagatsky A A, Koopmann P, Fuhrberg P, Huber G, Brown C T A, Sibbett W 2012 Opt. Lett. 37 437

    [9]

    Schmidt A, Koopmann P, Huber G, Fuhrberg P, Choi S Y, Yeom D, Rotermund F, Petrov V, Griebner U 2012 Optics Express 20 5313

    [10]

    Coluccelli N, Galzerano G, Gatti D, Lieto A D, Tonelli M, Laporta P 2010 Applied Physics B: Lasers and Optics 101 75

    [11]

    Coluccelli N, Lagatsky A, Lieto A D, Tonelli M, Galzerano G, Sibbett W, Laporta P 2011 Opt. Lett. 36 3209

    [12]

    Sato A, Asai K, Itabe T 1998 Appl. Opt. 37 6395

    [13]

    Stoneman R C, Efficient L E 1990 Opt. Lett. 15 486

    [14]

    Ueda K 2007 3rd Laser Ceramic Symposium Paris, October, 2007

    [15]

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050 (in Chinese) [杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 物理学报 58 8050]

    [16]

    Cheng X J, Xu J Q, Zhang W X, Jiang B X, Pan Y B 2009 Chin. Phys. Lett. 26 074204

    [17]

    Zhang S Y, Wang M J, Xu L, Wang Y, Tang Y L, Cheng X J, Chen W B, Xu J Q, Jiang B X, Pan Y B 2011 Opt. Express 19 727

    [18]

    Ma Q L, Bo Y, Zong N, Pan Y B, Peng Q J, Cui D F, Xu Z Y 2011 Optics Communications 284 1645

    [19]

    Gao W L, Ma J, Xie G Q, Zhang J, Luo D W, Yang H, Tang D Y, Ma J, Yuan P, Qian L J 2012 Opt. Lett. 37 1076

    [20]

    Yao B Q, Yu X, Ju Y L, Liu W B, Jiang B X, Pan Y B 2013 Chin. Phys. Lett. 30 024210

    [21]

    Zou Y W, Zhang Y D, Zhong X, Wei Z Y, Zhang W X, Jiang B X, Pan Y B 2010 Chin. Phys. Lett. 27 074213

    [22]

    Honninger C, Paschotta R, Morier G F, Moser M, Keller U 1999 J. Opt. Soc. Am. B 16 46

  • [1] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器. 物理学报, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [4] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [5] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [6] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [7] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器. 物理学报, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [8] 连富强, 樊仲维, 白振岙, 刘一州, 林蔚然, 张晓雷, 赵天卓. 高稳定性、高质量脉冲压缩飞秒光纤激光系统研究. 物理学报, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [9] 连富强, 樊仲维, 白振岙, 余锦, 林蔚然, 张晓雷, 刘迪, 赵天卓. 基于1064 nm光纤皮秒种子源的Nd:YAG再生放大器. 物理学报, 2014, 63(13): 134207. doi: 10.7498/aps.63.134207
    [10] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [11] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [12] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [13] 林志锋, 张云山, 高春清, 高明伟. LD抽运Cr,Tm,Ho∶YAG微片激光器单纵模运转特性的研究. 物理学报, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [14] 漆云凤, 楼祺洪, 朱洪涛, 周 军, 董景星, 魏运荣, 何 兵. Yb:Y2O3透明陶瓷的光学性能研究. 物理学报, 2007, 56(5): 2657-2662. doi: 10.7498/aps.56.2657
    [15] 黄绣江, 刘永智, 隋 展, 李明中, 李 忻, 林宏奂, 王建军. 全光纤超短脉冲掺Yb3+光纤环形激光器. 物理学报, 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [16] 关信安, 赵智虹. 同步泵浦-被动锁模染料激光器的基本方程及其解. 物理学报, 1989, 38(1): 16-23. doi: 10.7498/aps.38.16
    [17] 朱振和. 关于被动锁模激光器涨落模型的补充说明. 物理学报, 1985, 34(3): 426-428. doi: 10.7498/aps.34.426
    [18] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅱ)——计算机模拟. 物理学报, 1985, 34(5): 611-621. doi: 10.7498/aps.34.611
    [19] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅰ)——理论模型. 物理学报, 1985, 34(5): 603-610. doi: 10.7498/aps.34.603
    [20] 朱振和, 霍崇儒. 被动锁模激光器涨落模型的改进. 物理学报, 1981, 30(2): 178-188. doi: 10.7498/aps.30.178
计量
  • 文章访问数:  7111
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2013-09-18
  • 刊出日期:  2014-01-05

/

返回文章
返回