搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管光混频器产生太赫兹功率的理论分析

贾婉丽 赵立 侯磊 纪卫莉 施卫 屈光辉

引用本文:
Citation:

碳纳米管光混频器产生太赫兹功率的理论分析

贾婉丽, 赵立, 侯磊, 纪卫莉, 施卫, 屈光辉

Theoretical analysis of carbon nanotube photomixer-generated terahertz power

Jia Wan-Li, Zhao Li, Hou Lei, Ji Wei-Li, Shi Wei, Qu Guang-Hui
PDF
导出引用
  • 以光混频器电路模型为基础,理论分析了碳纳米管(CNT)材料光混频器产生太赫兹功率的大小. 通过对光混频器电导、天线的阻抗和外加偏置电压的模拟结果表明:提高光混频器电导、天线阻抗和外加偏置电压都能够提高输出太赫兹波功率,在小信号输入条件下,输出功率理论上能够达到数十微瓦.
    On the basis of mixer circuit model of light, the terahertz power generated by the carbon nanotubes (CNT) photomixer is analyzed. By simulating mixer conductance, impedance of the antenna, and light plus paranoid voltage, it is shown that the improved mixer conductance, antenna impedance and light plus paranoid voltage can improve the output power of terahertz waves. The output power can reach dozens of microwatt level in the small-signal limit.
    • 基金项目: 国家自然科学基金(批准号:61007060,61177057)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61007060, 61177057).
    [1]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007 太赫兹科学技术与应用 (北京: 北京大学出版社) 第9 页]

    [2]

    Brown E R, McIntosh K A, Nichols K B 1995 Appl. Phys. Lett. 66 285

    [3]

    Wang Y, Wu Q, Hu X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801

    [4]

    Wu Q, Wang Y, Wu Y M, Zhang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801

    [5]

    Heshmat B, Pahlevaninezhad H, Darcie T E 2012 IEEE Photonic Journal 4 970

    [6]

    Ren L, Zhang Q, Pint C L, Wojcik A K, Bunney M, Arikawa T, Kawayama I, Tonouchi M, Hauge R H, Belyanin A A, kono J 2013 Phys. Rev. B 87 1401

    [7]

    Saeedkia D, Majedi A H, Safavi N S, Mansour R R 2005 IEEE Journal of Quantum Electronics. 41 234

    [8]

    Sartorious B, Roehle H, Knzel H, Böttcher J, Schlak M, Stanze D, Venghaus H, Schell M 2008 Optics Express. 16 9565

    [9]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical properties of carbon nanotubes (Londom:Imperial College Press) pp59-70

    [10]

    Mintmire J W, Dunlap B I, White C T 1992 Phys. Rev. Lett. 68 631

    [11]

    Kibis O V, Rosenau da Costa M, Portnoi M E 2007 Nano Lett. 7 3414

    [12]

    Dragoman D, Dragoman M 2005 Physica E. 25 492

    [13]

    Brown E R, Smith F W, McIntosh K A 1993 J. Appl. Phys. 73 1480

    [14]

    Beard M C, Blackburn J L, Heben M J 2008 Nano Lett. 8 4238

    [15]

    Slava V Rotkin 2005 Applied physics of Carbon nanotubes (Springer) pp 60-74

    [16]

    Heshmat, Pahlevaninezhad H, Darcie T E, Papadopoulos C Radar Conference Washington DC, May 10-14, 2010 p1176

    [17]

    Tang X N, Yan X H, Ding J W 2005 Acta Phys. Sin. 54 333 (in Chinese)[唐娜斯, 颜晓红, 丁建文2005 物理学报 54 333]

    [18]

    Haque S, Marinelli C, Udrea F, Milne W I 2006 NSTI Nanotechnology Conference and Trade Show Nanotech 2006 9th Annua, Boston, May 7-11, 2006 pp134-137

    [19]

    Shang L, Liu M, Tanachutiwat S, Wang W 2008 IEEE International Symposium on Circuits and Systems Seattle, WA, May 18-21, 2008 p173

    [20]

    Javey A, Guo J, Paulsson J, Wang Q, Mann D, Lundstrom M, Dai H 2003 Physical Rev. Lett. 92 106804

    [21]

    Subash S, Chowdhury M H 2009 International Journal of Electronics. 96 657

    [22]

    Drkop T, Kim B M, Fuhrer M S 2004 J. Phys. Condens. Matter. 16 553

    [23]

    Heshmat B, Pahlevaninezhad H, Beard M C, Papadopoulos C, Darcie E T 2011 Optics Express 19 15077

  • [1]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007 太赫兹科学技术与应用 (北京: 北京大学出版社) 第9 页]

    [2]

    Brown E R, McIntosh K A, Nichols K B 1995 Appl. Phys. Lett. 66 285

    [3]

    Wang Y, Wu Q, Hu X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801

    [4]

    Wu Q, Wang Y, Wu Y M, Zhang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801

    [5]

    Heshmat B, Pahlevaninezhad H, Darcie T E 2012 IEEE Photonic Journal 4 970

    [6]

    Ren L, Zhang Q, Pint C L, Wojcik A K, Bunney M, Arikawa T, Kawayama I, Tonouchi M, Hauge R H, Belyanin A A, kono J 2013 Phys. Rev. B 87 1401

    [7]

    Saeedkia D, Majedi A H, Safavi N S, Mansour R R 2005 IEEE Journal of Quantum Electronics. 41 234

    [8]

    Sartorious B, Roehle H, Knzel H, Böttcher J, Schlak M, Stanze D, Venghaus H, Schell M 2008 Optics Express. 16 9565

    [9]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical properties of carbon nanotubes (Londom:Imperial College Press) pp59-70

    [10]

    Mintmire J W, Dunlap B I, White C T 1992 Phys. Rev. Lett. 68 631

    [11]

    Kibis O V, Rosenau da Costa M, Portnoi M E 2007 Nano Lett. 7 3414

    [12]

    Dragoman D, Dragoman M 2005 Physica E. 25 492

    [13]

    Brown E R, Smith F W, McIntosh K A 1993 J. Appl. Phys. 73 1480

    [14]

    Beard M C, Blackburn J L, Heben M J 2008 Nano Lett. 8 4238

    [15]

    Slava V Rotkin 2005 Applied physics of Carbon nanotubes (Springer) pp 60-74

    [16]

    Heshmat, Pahlevaninezhad H, Darcie T E, Papadopoulos C Radar Conference Washington DC, May 10-14, 2010 p1176

    [17]

    Tang X N, Yan X H, Ding J W 2005 Acta Phys. Sin. 54 333 (in Chinese)[唐娜斯, 颜晓红, 丁建文2005 物理学报 54 333]

    [18]

    Haque S, Marinelli C, Udrea F, Milne W I 2006 NSTI Nanotechnology Conference and Trade Show Nanotech 2006 9th Annua, Boston, May 7-11, 2006 pp134-137

    [19]

    Shang L, Liu M, Tanachutiwat S, Wang W 2008 IEEE International Symposium on Circuits and Systems Seattle, WA, May 18-21, 2008 p173

    [20]

    Javey A, Guo J, Paulsson J, Wang Q, Mann D, Lundstrom M, Dai H 2003 Physical Rev. Lett. 92 106804

    [21]

    Subash S, Chowdhury M H 2009 International Journal of Electronics. 96 657

    [22]

    Drkop T, Kim B M, Fuhrer M S 2004 J. Phys. Condens. Matter. 16 553

    [23]

    Heshmat B, Pahlevaninezhad H, Beard M C, Papadopoulos C, Darcie E T 2011 Optics Express 19 15077

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [3] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟. 物理学报, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [4] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [5] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [6] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [7] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [8] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [9] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [10] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [11] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [12] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
    [13] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [14] 樊国丽, 江月松, 刘丽, 黎芳. 太赫兹GaAs肖特基混频二极管高频特性分析. 物理学报, 2010, 59(8): 5374-5381. doi: 10.7498/aps.59.5374
    [15] 袁艳红, 苗润才. 多壁碳纳米管光限幅特性的研究. 物理学报, 2009, 58(2): 1276-1279. doi: 10.7498/aps.58.1276
    [16] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [17] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [18] 牛燕雄, 张 鹏, 何琛娟, 段晓峰, 禹 烨, 姚建铨. 可溶性碳纳米管光限幅特性的实验研究. 物理学报, 2005, 54(8): 3661-3664. doi: 10.7498/aps.54.3661
    [19] 封 伟, 易文辉, 徐友龙, 连彦青, 王晓工, 吉野胜美. 聚苯胺-碳纳米管复合体的制备及其光响应. 物理学报, 2003, 52(5): 1272-1277. doi: 10.7498/aps.52.1272
    [20] 孙劲鹏, 王太宏. 一种基于碳纳米管的随机存储器. 物理学报, 2002, 51(9): 2096-2100. doi: 10.7498/aps.51.2096
计量
  • 文章访问数:  6297
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-09
  • 修回日期:  2013-12-23
  • 刊出日期:  2014-04-05

/

返回文章
返回