搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖晶石铁氧体TixNi1-xFe2O4中阳离子分布和Ti离子磁矩的实验研究

徐静 齐伟华 纪登辉 李壮志 唐贵德 张晓云 尚志丰 朗莉莉

引用本文:
Citation:

尖晶石铁氧体TixNi1-xFe2O4中阳离子分布和Ti离子磁矩的实验研究

徐静, 齐伟华, 纪登辉, 李壮志, 唐贵德, 张晓云, 尚志丰, 朗莉莉

Study on cation distribution and magnetic moment of Ti ions in spinel ferrites Ni1-xTixFe2O4

Xu Jing, Qi Wei-Hua, Ji Deng-Hui, Li Zhuang-Zhi, Tang Gui-De, Zhang Xiao-Yun, Shang Zhi-Feng, Lang Li-Li
PDF
导出引用
  • 采用固相反应法制备了系列样品TixNi1-xFe2O4 (x=0.0, 0.1, 0.2, 0.3, 0.4). 室温下的X射线衍射谱表明样品全部为(A)[B]2O4型单相立方尖晶石结构, 属于空间群Fd3m. 样品的晶格常数随Ti掺杂量的增加而增大. 样品在10 K温度下的比饱和磁化强度σS随着Ti掺杂量x的增加逐渐减小. 研究发现, 当Ti掺杂量x≥ 0.2时, 磁化强度σ随温度T的变化曲线出现两个转变温度TL和TN. 当温度低于TN时, 磁化强度明显减小; 当温度达到TN时, dσ/dT具有最大值. σ-T曲线的这些特征表明, 由于Ti掺杂在样品中出现了附加的反铁磁结构. 这说明样品中的Ti离子不是无磁性的+4价离子, 而是以+2和+3价态存在, 其离子磁矩的方向与Fe和Ni离子的磁矩方向相反. 利用本课题组提出的量子力学方势垒模型拟合样品在10 K温度下的磁矩, 得到了Ti, Fe和Ni三种阳离子在(A)位和[B]位的分布情况, 并发现在所有掺杂样品中, 80%的Ti离子以+2价态占据尖晶石结构的[B]位.
    Spinel ferrite samples TixNi1-xFe2O4 (x=0, 0.1, 0.2, 0.3, 0.4) were prepared using conventional solid reaction method. The sample exhibit a single-phase cubic spinel structure with a space group obtained Fd3m. The lattice parameter a increases with the increase of Ti doping level x. But the specific saturation magnetizations, σs, gradually decrease with increasing Ti doping level x at 10 K and 300 K. It is interesting that when the doping level x≥0.2, two transition temperatures, TL and TN, are found: when the temperature is lower than TN, the magnetization is obviously decreased, while at the temperature TL, dσ/d T reaches a maximum value. This phenomenon indicates that an additional antiferromagnetic structure arises in the traditional spinel phase of ferrites which results from Ti doping, that Ti ions will show the form of Ti3+ and Ti2+ cations which have magnetic moments, and that the magnetic moments of the Ti cations are opposite to those of the Fe and Ni cations. The dependence of the magnetic moments of the samples on the Ti doping level x at 10 K was fitted successfully using the quantum-mechanical potential barrier model proposed earlier by our group. In the fitting process, the distributions of Ti, Ni and Fe cations in the samples are obtained. It is found that 80% of the Ti cations will occupy the [B] sites in Ti2+ form.
    • 基金项目: 国家自然科学基金(批准号: 11174069)和河北省教育厅青年基金(批准号:QN20131008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174069), and the Young scholar Science Foundation of the Education Department of Hebei Province, China (Grant No. QN20131008).
    [1]

    Silwal P, Miao L, Stern I, Zhou X, Hu J, Kim D H 2012 Appl. Phys. Lett. 100 032102

    [2]

    Fritsch D, Ederer C 2011 Appl. Phys. Lett. 99 081916

    [3]

    Zhang R C, Liu L, Xu X L 2011 Chin. Phys. B 20 086101

    [4]

    Wang W J, Zang C G, Jiao Q J 2013 Chin. Phys. B 22 128101

    [5]

    Zhou X, Hou Z L, Li Feng, Qi Xin 2010 Chin. Phys. Lett. 27 117501

    [6]

    Huang Y L, Hou Y H, Zhao Y J, Liu Z W, Zeng D C, Ma S C 2013 Acta Phys. Sin. 62 167502 (in Chinese) [黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿 2013 物理学报 62 167502]

    [7]

    Bai Y, Ding L H, Zhang W F 2011 Acta Phys. Sin. 60 058201 (in Chinese) [白莹, 丁玲红, 张伟风 2011 物理学报 60 058201]

    [8]

    Lei J M, L L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [9]

    Kale C M, Bardapurkar P P, Shukla S J, Jadhav K M 2013 J. Magn. Magn. Mater. 331 220

    [10]

    Chand Prem, Srivastava Ramesh C, Upadhyay Anuj 2008 J. Alloy. Compd. 460 108

    [11]

    Srivastava R C, Khan D C, Das A R 1990 Physical Review B 41 12514

    [12]

    Heinrich H, Christian K, Ernst B 1996 J. Solid State Chem. 125 216

    [13]

    Tang G D, Hou D L, Chen W, Zhao X, Qi W H 2007 Appl. Phys. Lett. 90 144101

    [14]

    Tang G D, Ji D H, Yao Y X, Liu S P, Li Z Z, Qi W H, Han Q J, Hou X, Hou D L 2011 Appl. Phys. Lett. 98 072511

    [15]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [16]

    Ji D H, Tang G D, Li Z Z, Hou X, Han Q J, Qi W H, Bian R R, Liu S R 2013 J. Magn. Magn. Mater. 326 197

    [17]

    Ji D H 2013 PH. D. dissertations (Shijiazhuang: Hebei Normal University) (In Chinese) [纪登辉2013博士学位论文(石家庄: 河北师范大学)]

    [18]

    Liu S R, Ji D H, Xu J, Li Z Z, Tang G D, Bian R R, Qi W H, Shang Z F, Zhang X Y 2013 J. Alloy. Compd. 581 616

    [19]

    Tang G D, Han Q J, Xu J, Ji D H, Qi W H, Li Z Z, Shang Z F, Zhang X Y 2014 Physica B 438 91

    [20]

    Zhang X Y, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Ji D H, Lang L L 2014 Physica B 446 92

    [21]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z, Lang L L 2014 Chin. Phys. B 23 107503

    [22]

    Soshin Chikazumi 1997 Physics of Ferromagnetism 2e (Oxford University Press) p111

    [23]

    Chen C W 1977 Magnetism and Metallurgy of soft magnetic materials, North-Holland Publishing Company

    [24]

    Dai D S, Qian K M 2000 Ferromagnetics (Science Press) p144 [戴道生, 钱昆明 2000 铁磁学 (科学出版社) 第144页]

    [25]

    Shannon R D 1976 Acta Cryst. A 32 751

    [26]

    Rietveld H M 1969 J. Appl. Cryst. 2 65

  • [1]

    Silwal P, Miao L, Stern I, Zhou X, Hu J, Kim D H 2012 Appl. Phys. Lett. 100 032102

    [2]

    Fritsch D, Ederer C 2011 Appl. Phys. Lett. 99 081916

    [3]

    Zhang R C, Liu L, Xu X L 2011 Chin. Phys. B 20 086101

    [4]

    Wang W J, Zang C G, Jiao Q J 2013 Chin. Phys. B 22 128101

    [5]

    Zhou X, Hou Z L, Li Feng, Qi Xin 2010 Chin. Phys. Lett. 27 117501

    [6]

    Huang Y L, Hou Y H, Zhao Y J, Liu Z W, Zeng D C, Ma S C 2013 Acta Phys. Sin. 62 167502 (in Chinese) [黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿 2013 物理学报 62 167502]

    [7]

    Bai Y, Ding L H, Zhang W F 2011 Acta Phys. Sin. 60 058201 (in Chinese) [白莹, 丁玲红, 张伟风 2011 物理学报 60 058201]

    [8]

    Lei J M, L L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [9]

    Kale C M, Bardapurkar P P, Shukla S J, Jadhav K M 2013 J. Magn. Magn. Mater. 331 220

    [10]

    Chand Prem, Srivastava Ramesh C, Upadhyay Anuj 2008 J. Alloy. Compd. 460 108

    [11]

    Srivastava R C, Khan D C, Das A R 1990 Physical Review B 41 12514

    [12]

    Heinrich H, Christian K, Ernst B 1996 J. Solid State Chem. 125 216

    [13]

    Tang G D, Hou D L, Chen W, Zhao X, Qi W H 2007 Appl. Phys. Lett. 90 144101

    [14]

    Tang G D, Ji D H, Yao Y X, Liu S P, Li Z Z, Qi W H, Han Q J, Hou X, Hou D L 2011 Appl. Phys. Lett. 98 072511

    [15]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [16]

    Ji D H, Tang G D, Li Z Z, Hou X, Han Q J, Qi W H, Bian R R, Liu S R 2013 J. Magn. Magn. Mater. 326 197

    [17]

    Ji D H 2013 PH. D. dissertations (Shijiazhuang: Hebei Normal University) (In Chinese) [纪登辉2013博士学位论文(石家庄: 河北师范大学)]

    [18]

    Liu S R, Ji D H, Xu J, Li Z Z, Tang G D, Bian R R, Qi W H, Shang Z F, Zhang X Y 2013 J. Alloy. Compd. 581 616

    [19]

    Tang G D, Han Q J, Xu J, Ji D H, Qi W H, Li Z Z, Shang Z F, Zhang X Y 2014 Physica B 438 91

    [20]

    Zhang X Y, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Ji D H, Lang L L 2014 Physica B 446 92

    [21]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z, Lang L L 2014 Chin. Phys. B 23 107503

    [22]

    Soshin Chikazumi 1997 Physics of Ferromagnetism 2e (Oxford University Press) p111

    [23]

    Chen C W 1977 Magnetism and Metallurgy of soft magnetic materials, North-Holland Publishing Company

    [24]

    Dai D S, Qian K M 2000 Ferromagnetics (Science Press) p144 [戴道生, 钱昆明 2000 铁磁学 (科学出版社) 第144页]

    [25]

    Shannon R D 1976 Acta Cryst. A 32 751

    [26]

    Rietveld H M 1969 J. Appl. Cryst. 2 65

  • [1] 刘红艳, 柳祝红, 李歌天, 马星桥. Ga含量对Mn2-xNiGa1+x结构和磁性的影响. 物理学报, 2016, 65(4): 048102. doi: 10.7498/aps.65.048102
    [2] 王步升, 刘永. MnTe电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(6): 066101. doi: 10.7498/aps.65.066101
    [3] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [4] 秦健萍, 梁瑞瑞, 吕瑾, 武海顺. ComAln(m+n ≤ 6)团簇的结构和磁性理论研究. 物理学报, 2014, 63(13): 133102. doi: 10.7498/aps.63.133102
    [5] 吕瑾, 秦健萍, 武海顺. ConAl (n= 18)合金团簇结构和磁性质研究. 物理学报, 2013, 62(5): 053101. doi: 10.7498/aps.62.053101
    [6] 杨育奇, 高庆庆, 李冠男. 组合结构化合物Ho2Ni7-xFex (x=03.0)的晶体结构、结构转变和磁性. 物理学报, 2013, 62(1): 016103. doi: 10.7498/aps.62.016103
    [7] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [8] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [9] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [10] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [11] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [12] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [14] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [15] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [16] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [17] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [18] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [19] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [20] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
计量
  • 文章访问数:  3297
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-22
  • 修回日期:  2014-06-25
  • 刊出日期:  2015-01-05

尖晶石铁氧体TixNi1-xFe2O4中阳离子分布和Ti离子磁矩的实验研究

  • 1. 河北省新型薄膜材料实验室, 河北师范大学物理科学与信息工程学院, 石家庄 050024;
  • 2. 河北工程大学理学院, 邯郸 056038;
  • 3. 六盘水师范学院物理与电子科学系, 六盘水 553004
    基金项目: 国家自然科学基金(批准号: 11174069)和河北省教育厅青年基金(批准号:QN20131008)资助的课题.

摘要: 采用固相反应法制备了系列样品TixNi1-xFe2O4 (x=0.0, 0.1, 0.2, 0.3, 0.4). 室温下的X射线衍射谱表明样品全部为(A)[B]2O4型单相立方尖晶石结构, 属于空间群Fd3m. 样品的晶格常数随Ti掺杂量的增加而增大. 样品在10 K温度下的比饱和磁化强度σS随着Ti掺杂量x的增加逐渐减小. 研究发现, 当Ti掺杂量x≥ 0.2时, 磁化强度σ随温度T的变化曲线出现两个转变温度TL和TN. 当温度低于TN时, 磁化强度明显减小; 当温度达到TN时, dσ/dT具有最大值. σ-T曲线的这些特征表明, 由于Ti掺杂在样品中出现了附加的反铁磁结构. 这说明样品中的Ti离子不是无磁性的+4价离子, 而是以+2和+3价态存在, 其离子磁矩的方向与Fe和Ni离子的磁矩方向相反. 利用本课题组提出的量子力学方势垒模型拟合样品在10 K温度下的磁矩, 得到了Ti, Fe和Ni三种阳离子在(A)位和[B]位的分布情况, 并发现在所有掺杂样品中, 80%的Ti离子以+2价态占据尖晶石结构的[B]位.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回