搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机激励下双稳态压电俘能系统的相干共振及实验验证

蓝春波 秦卫阳 李海涛

引用本文:
Citation:

随机激励下双稳态压电俘能系统的相干共振及实验验证

蓝春波, 秦卫阳, 李海涛

Broadband energy harvesting from coherence resonance of a piezoelectric bistable system and its experimental validation

Lan Chun-Bo, Qin Wei-Yang, Li Hai-Tao
PDF
导出引用
  • 随着压电晶体材料的迅速发展, 基于压电效应的能量采集系统是俘获环境中的宽带随机振动能量的一种有效途径. 研究了有限宽带随机激励作用下, 磁斥力双稳态压电俘能系统的相干共振俘能机理, 并进行了实验验证. 运用Euler-Maruyama方法求解了随机非线性压电振动耦合方程, 比较分析了相干共振发生前后系统的动力学特性和俘能效率, 然后基于Kramers逃逸速率解释了相干共振. 最后的随机振动实验结果验证了双稳态压电俘能系统的相干共振俘能机理. 并且观察到: 当相干共振发生时, 系统会在两个势能阱之间剧烈运动, 此时宽带随机振动能量会被转化为大幅值窄带低频振动响应, 从而极大地提高了宽带随机振动能量的俘获效率.
    Piezoelectric effect is an effective way of harvesting energy from the environmental broadband vibration. In this paper, we investigate the coherence resonance of a piezoelectric bistable vibration energy harvester theoretically and experimentally. The device is comprised of a cantilever beam with magnetic repulsive force. Firstly, the electromechanical coupled equation is derived based on the Euler-Bernoulli beam theory. Then, analyzing the potential shapes, we learn that when the system oscillates between the two potential wells, it will produce a large voltage generally. And the beam dynamic response under the random excitation is simulated by Euler-Maruyama method. The results of simulations and experiments show that there is a coherence resonance threshold in the Duffing type piezoelectric bistable energy harvester. When the standard deviation of the random excitation is less than the threshold, the motion state of the system will be trapped in a single potential well, which results in a low average output power. And when the excitation standard deviation is larger than the threshold, the system stochastic stability will change. The dynamic displacement and strain clearly show that the system can exhibit large oscillation between the two potential wells. Then, Kramers rate is used to explain the coherence resonance threshold of the bistable system under the broadband random excitation. The experimental results show that when the coherence resonance takes place, the beam will oscillate between the two potential wells more frequently, and the broadband vibration energy can be transformed into large amplitude narrow band low-frequency oscillation response, which can greatly improve the harvesting effectiveness of broadband vibration energy.
    • 基金项目: 国家自然科学基金(批准号: 11172234)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172234).
    [1]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [2]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [3]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [4]

    Ferrari M, Ferrari V, Guizzetti M, Ando B, Baglio S, Trigona C 2010 Sens. Actuators. A 162 425

    [5]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 物理学报 61 210505]

    [6]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [7]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [8]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

    [9]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [10]

    Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A W, Litak G 2012 J. Intel. Mater. Syst. Struct. 23 1505

    [11]

    McInnes C R, Gorman D G, Cartmell M P 2008 J. Sound Vib. 318 655

    [12]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

    [13]

    Zheng R C, Nakano K, Hu H G, Su D X, Cartmell M P 2014 J. Sound Vib. 333 2568

    [14]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [15]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [16]

    Li H T, Qin W Y 2014 Acta Phys. Sin. 63 120505 (in Chinese) [李海涛, 秦卫阳 2014 物理学报 63 120505]

    [17]

    Cyrill B M 2005 Physica D 210 227

    [18]

    Pikovsky A S, Kurths J 2005 Phys. Rev. Lett 95 123903

  • [1]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [2]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [3]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [4]

    Ferrari M, Ferrari V, Guizzetti M, Ando B, Baglio S, Trigona C 2010 Sens. Actuators. A 162 425

    [5]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 物理学报 61 210505]

    [6]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [7]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [8]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

    [9]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [10]

    Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A W, Litak G 2012 J. Intel. Mater. Syst. Struct. 23 1505

    [11]

    McInnes C R, Gorman D G, Cartmell M P 2008 J. Sound Vib. 318 655

    [12]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

    [13]

    Zheng R C, Nakano K, Hu H G, Su D X, Cartmell M P 2014 J. Sound Vib. 333 2568

    [14]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [15]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [16]

    Li H T, Qin W Y 2014 Acta Phys. Sin. 63 120505 (in Chinese) [李海涛, 秦卫阳 2014 物理学报 63 120505]

    [17]

    Cyrill B M 2005 Physica D 210 227

    [18]

    Pikovsky A S, Kurths J 2005 Phys. Rev. Lett 95 123903

  • [1] 刘恩彩, 方鑫, 温激鸿, 郁殿龙. 双稳态结构中的1/2次谐波共振及其对隔振特性的影响. 物理学报, 2020, 69(6): 064301. doi: 10.7498/aps.69.20191082
    [2] 马星晨, 叶瑞丰, 张添乐, 张晓青. 基于单极性驻极体薄膜的振动能俘获研究. 物理学报, 2016, 65(17): 177701. doi: 10.7498/aps.65.177701
    [3] 蓝春波, 秦卫阳. 带碰撞双稳态压电俘能系统的俘能特性研究. 物理学报, 2015, 64(21): 210501. doi: 10.7498/aps.64.210501
    [4] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [5] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [6] 李海涛, 秦卫阳. 宽频随机激励下非线性压电能量采集器的相干共振. 物理学报, 2014, 63(12): 120505. doi: 10.7498/aps.63.120505
    [7] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振. 物理学报, 2014, 63(22): 220504. doi: 10.7498/aps.63.220504
    [8] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [9] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [10] 林敏, 黄咏梅. 双稳系统随机共振的能量输入机理. 物理学报, 2012, 61(22): 220205. doi: 10.7498/aps.61.220205
    [11] 林敏, 张美丽. 力与耦合系统的交互作用和随机能量共振. 物理学报, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [12] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究. 物理学报, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [13] 闫辉, 姜洪源, 刘文剑, 郝振东, Ulannov A. M.. 金属橡胶隔振器随机振动加速度响应分析. 物理学报, 2010, 59(6): 4065-4070. doi: 10.7498/aps.59.4065
    [14] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振. 物理学报, 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [15] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态. 物理学报, 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [16] 易 鸣, 贾 亚, 刘 泉, 詹 璇. 生物钟基因网络中分子噪声诱导的日夜节律振荡及相干共振. 物理学报, 2008, 57(1): 621-627. doi: 10.7498/aps.57.621
    [17] 周小荣, 罗晓曙. 小世界生物神经网络的相干共振研究. 物理学报, 2008, 57(5): 2849-2853. doi: 10.7498/aps.57.2849
    [18] 林 敏, 黄咏梅. 基于振动共振的随机共振控制. 物理学报, 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
    [19] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [20] 陈园园, 王奇, 施解龙. 非相干多分量空间双稳态孤子. 物理学报, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
计量
  • 文章访问数:  7214
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-04-05

/

返回文章
返回