搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类可变禁区的不连续系统的加周期分岔

杨科利

引用本文:
Citation:

一类可变禁区的不连续系统的加周期分岔

杨科利

Period-adding bifurcations in a discontinuous system with a variable gap

Yang Ke-Li
PDF
导出引用
  • 研究了一类可变禁区不连续系统的加周期分岔行为, 发现由可变禁区导致不同类型的加周期分岔. 研究表明, 系统的迭代轨道和禁区的上下两个边界均可发生边界碰撞, 从而产生加周期分岔. 基于边界碰撞分岔理论, 定义基本的迭代单元, 解析推导出了相应的分岔曲线, 在全参数空间中给出了不同加周期所出现的范围. 与数值模拟结果比较, 理论分析结果与数值结果高度一致.
    The period-adding bifurcations in a discontinuous system with a variable gap are observed for two control parameters. Various period-adding bifurcations are found by simulations. The bifurcation diagram can be divided into two different zones: chaos and period. The period attractor takes up a considerable part of the parameter space, and all of them show stable period attractors. The periodic zone can also be divided into three different zones: stable period-5 attractor, period-adding bifurcations on the right side of period-5 attractor, and period-adding bifurcations on the right side of period-5 attractor. We choose various control parameters to plot the cobweb of period attractor, and find that it will exhibit a border-collision bifurcation and the period orbit loses its stability, once the position of iteration reaches discontinuous boundary. The discontinuous system has two kinds of border-collision bifurcations: one comes from the gap on the right side, and the other from the gap on the left side. The results show that the period-adding phenomena are due to the border-collision bifurcation at two boundaries of the forbidden area. In order to determine the condition of the period orbit existence, we also choose various control parameters to plot the cobweb of period attractor. The results show that the iteration sequence of period trajectory has a certain sequence with different iteration units. The period trajectory of period-adding bifurcation on the left side of period-5 attractor consists of period-4 and period-5 iteration units, forming period-9, period-13 and period-14 attractor. The period trajectory of period-adding bifurcation on the right side of period-5 attractor consists of period-6 and period-5 iteration units, forming period-11, period-16 and period-21 attractor. All attractors can be easily shown analytically, owing to the piecewise linear characteristics of the map. We analyze its underlying mechanisms from the viewpoint of border-collision bifurcations. The result shows that the period attractor can be determined by two border-collision bifurcations and the condition of stability. Based on the theoretical and iteration unit, the border-collision bifurcations, two border collision bifurcation curves are obtained analytically. The result shows that the theoretical and numerical results are in excellent agreement.
    • 基金项目: 国家自然科学基金(批准号:11205006)、陕西省科技新星专项(批准号:2014KJXX-77)和宝鸡文理学院重点科研项目(批准号:ZK15028)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11205006), the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2014KJXX-77), and the Science Foundation of Baoji University of Science and Arts, China (Grant No. ZK15028).
    [1]

    Puu T, Gardini L, Sushko I 2005 J. Econ. Behav. Organ 56 331

    [2]

    Banerjee S, Ranjan P, Grebogi C 2000 IEEE Trans. Circuits-I 47 633

    [3]

    Loskutov A Y 1993 Physica A 26 4581

    [4]

    Lamba H, Budd C J 1994 Phys. Rev. E 50 84

    [5]

    Wang J, Ding X L, Hu B, Wang B H, Mao J S, He D R 2001 Phys. Rev. E 64 026202

    [6]

    Zhusubaliyev Z T, Mosekilde E 2003 Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems (Singapore: World Scientific)

    [7]

    Ren H P, Liu D 2005 Chin. Phys. 14 1352

    [8]

    Kollar L E, Stepan G, Turi J 2004 Int. J. Bifurcat. Chaos 14 2341

    [9]

    Hogan S, Higham L, Griffin T 2007 Proc. Roy. Soc. A: Math. Phy. 463 49

    [10]

    Qu S X, Wu S, He D R 1998 Phys. Rev. E 57 402

    [11]

    Qu S X, Wu S, He D R 1997 Phys. Lett. A 231 152

    [12]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D 79 335

    [13]

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979 (in Chinese) [戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979]

    [14]

    Christiansen B, Habip S, Bauer M, Krueger U, Martienssen W, He D R, Wang B H 1993 Acta Phys. Sin. 42 711 (in Chinese) [Christiansen B, Habip S, Bauer M, Krueger U, Martienssen W, 何大韧, 汪秉宏 1993 物理学报 42 711]

    [15]

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841 (in Chinese) [屈世显, Christiansen B, 何大韧 1995 物理学报 44 841]

    [16]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phys. B 17 4418

    [17]

    Izhikevich E M 2003 IEEE Trans. Neural Network 14 1569

    [18]

    Ibarz B, Casado J M, Sanjuan M A 2011 Phys. Rep. 501 1

    [19]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413

    [20]

    He Y, Jiang Y M, Shen Y, He D R 2004 Phys. Rev. E 70 056213

  • [1]

    Puu T, Gardini L, Sushko I 2005 J. Econ. Behav. Organ 56 331

    [2]

    Banerjee S, Ranjan P, Grebogi C 2000 IEEE Trans. Circuits-I 47 633

    [3]

    Loskutov A Y 1993 Physica A 26 4581

    [4]

    Lamba H, Budd C J 1994 Phys. Rev. E 50 84

    [5]

    Wang J, Ding X L, Hu B, Wang B H, Mao J S, He D R 2001 Phys. Rev. E 64 026202

    [6]

    Zhusubaliyev Z T, Mosekilde E 2003 Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems (Singapore: World Scientific)

    [7]

    Ren H P, Liu D 2005 Chin. Phys. 14 1352

    [8]

    Kollar L E, Stepan G, Turi J 2004 Int. J. Bifurcat. Chaos 14 2341

    [9]

    Hogan S, Higham L, Griffin T 2007 Proc. Roy. Soc. A: Math. Phy. 463 49

    [10]

    Qu S X, Wu S, He D R 1998 Phys. Rev. E 57 402

    [11]

    Qu S X, Wu S, He D R 1997 Phys. Lett. A 231 152

    [12]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D 79 335

    [13]

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979 (in Chinese) [戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979]

    [14]

    Christiansen B, Habip S, Bauer M, Krueger U, Martienssen W, He D R, Wang B H 1993 Acta Phys. Sin. 42 711 (in Chinese) [Christiansen B, Habip S, Bauer M, Krueger U, Martienssen W, 何大韧, 汪秉宏 1993 物理学报 42 711]

    [15]

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841 (in Chinese) [屈世显, Christiansen B, 何大韧 1995 物理学报 44 841]

    [16]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phys. B 17 4418

    [17]

    Izhikevich E M 2003 IEEE Trans. Neural Network 14 1569

    [18]

    Ibarz B, Casado J M, Sanjuan M A 2011 Phys. Rep. 501 1

    [19]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413

    [20]

    He Y, Jiang Y M, Shen Y, He D R 2004 Phys. Rev. E 70 056213

  • [1] 史国栋, 张海明, 包伯成, 冯霏, 董伟. 脉冲序列控制双断续导电模式BIFRED变换器的动力学建模与多周期行为. 物理学报, 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [2] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究. 物理学报, 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [3] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 动态损伤演化的空间不连续性实验研究. 物理学报, 2013, 62(22): 226201. doi: 10.7498/aps.62.226201
    [4] 吴松荣, 何圣仲, 许建平, 周国华, 王金平. 电压型双频率控制开关变换器的动力学建模与多周期行为分析. 物理学报, 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [5] 杨平, 许建平, 何圣仲, 包伯成. 电流控制二次型Boost变换器的动力学研究. 物理学报, 2013, 62(16): 160501. doi: 10.7498/aps.62.160501
    [6] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式. 物理学报, 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [7] 谢玲玲, 龚仁喜, 卓浩泽, 马献花. 电压模式控制不连续传导模式boost变换器切分岔研究. 物理学报, 2012, 61(5): 058401. doi: 10.7498/aps.61.058401
    [8] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究 . 物理学报, 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [9] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔. 物理学报, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [10] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究. 物理学报, 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [11] 陈杰夫, 朱宝, 钟万勰. 半解析对偶棱边元及其在波导不连续性问题中的应用. 物理学报, 2009, 58(2): 1091-1099. doi: 10.7498/aps.58.1091
    [12] 杨谈, 金跃辉, 程时端. TCP-RED离散反馈系统中的边界碰撞分岔及混沌控制. 物理学报, 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [13] 马 强, 江建军, 别少伟, 杜 刚, 冯则坤, 何华辉. CoFeB/MgO不连续多层纳米软磁薄膜微波电磁特性. 物理学报, 2008, 57(10): 6577-6581. doi: 10.7498/aps.57.6577
    [14] 王学梅, 张 波, 丘东元. 不连续导电模式DC-DC变换器的倍周期分岔机理研究. 物理学报, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [15] 戴 俊, 褚翔升, 何大韧. 不连续不可逆二维映象的动力学特性. 物理学报, 2006, 55(8): 3979-3984. doi: 10.7498/aps.55.3979
    [16] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌. 物理学报, 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
    [17] 孙建刚, 官山, 纪西萍, 何大韧, 汪秉宏, 屈世显. 动力学不连续性引起的新型激变. 物理学报, 1996, 45(12): 1970-1977. doi: 10.7498/aps.45.1970
    [18] 柯三黄, 王仁智, 黄美纯. 应变层半导体超晶格价带边不连续性的第一原理研究. 物理学报, 1994, 43(1): 103-109. doi: 10.7498/aps.43.103
    [19] 王仁智, 黄美纯. 异质结价带边不连续△Ev的理论计算. 物理学报, 1991, 40(10): 1683-1688. doi: 10.7498/aps.40.1683
    [20] 黄宏嘉. 关于耦合波理论中的不连续性问题. 物理学报, 1962, 18(1): 56-62. doi: 10.7498/aps.18.56
计量
  • 文章访问数:  2602
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-06-05

一类可变禁区的不连续系统的加周期分岔

  • 1. 陕西师范大学物理与信息技术学院, 理论与计算物理研究所, 西安 710062;
  • 2. 宝鸡文理学院非线性研究所, 宝鸡 721016
    基金项目: 国家自然科学基金(批准号:11205006)、陕西省科技新星专项(批准号:2014KJXX-77)和宝鸡文理学院重点科研项目(批准号:ZK15028)资助的课题.

摘要: 研究了一类可变禁区不连续系统的加周期分岔行为, 发现由可变禁区导致不同类型的加周期分岔. 研究表明, 系统的迭代轨道和禁区的上下两个边界均可发生边界碰撞, 从而产生加周期分岔. 基于边界碰撞分岔理论, 定义基本的迭代单元, 解析推导出了相应的分岔曲线, 在全参数空间中给出了不同加周期所出现的范围. 与数值模拟结果比较, 理论分析结果与数值结果高度一致.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回