搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种简单精准的渐变折射率分布光波导分析方法

张梦若 陈开鑫

引用本文:
Citation:

一种简单精准的渐变折射率分布光波导分析方法

张梦若, 陈开鑫

A simple and exact method to analyze optical waveguide with graded index profile

Zhang Meng-Ruo, Chen Kai-Xin
PDF
导出引用
  • 渐变折射率分布的光波导分析对光波导器件的设计和研究至关重要, 近年来已提出了多种分析方法, 然而在简便性或准确性上都存在着不足. 为此, 提出了一种分析渐变折射率分布光波导的方法, 能够结合现有的Wentzel-Kramers-Brillouin近似法和离散化的波动方程, 构建模场分布, 再结合变分运算方程和修正的模式本征方程, 计算出较为精确的有效折射率. 与其他分析方法相比, 该方法较为简单, 而且有一定的精度.
    A simple analytical method is proposed to obtain the exact propagation constant and distribution of electric field intensity of optical waveguides with graded refractive index profile. The method is based on the Wenzel-Kramers-Brillouin (WKB) solution, variational method, modified eigen-equations and discretized scalar wave equation for planar optical waveguide. The expressions of the distribution of electric field intensity based on the conventional WKB method, which diverge around the turning point, have been demonstrated to be very exact in the region beyond the turning point where the refractive index profile varies slowly. The proposed method uses the conventional WKB method to calculate the values of electric field intensity at two adjacent positions beyond the turning point and then the electric field intensity profile for the whole region is obtained by making use of the two calculated values. Two simple and explicit formulas are deduced from the discretized scalar wave equation, which provide a relationship among the values of electric field intensity at three adjacent positions. If the effective refractive index of optical waveguide and the refractive index profile for the whole region are known, we can obtain the value of electric field intensity at any position according to the corresponding values at the adjacent positions by using the two formulas aforementioned. By using the two values calculated by WKB method, the electric field intensity profile for the whole region can be determined through the iterative use of the two formulas. The accuracy of the electric field intensity profile determined by the proposed method is greatly dependent on the accuracy of the applied value of the effective refractive index. To achieve exact propagation constant and distribution of electric field intensity, the variational method and modified eigen-equations are employed in the proposed method. Variational method is a very useful method to improve the accuracy of the propagation constant in the analysis of optical waveguide with step-asymmetrical graded refractive index profile. By combining the traditional variational method and calculation of electric field intensity profile by the proposed method, the improved variational method is presented to obtain the exact propagation constant of optical waveguide. The value of propagation constant calculated by WKB method and the corresponding electric intensity field profile determined by the proposed method are chosen as the initial trial value and trial function in the variational method. Propagation constant and the corresponding electric field intensity profile with better accuracy can be achieved by the variational calculation and then are regarded as the new trial value and trial function. By the iterative use of the variational method and calculation of electric field intensity profile by the proposed method at finite times, quite accurate results are obtained. The modified eigen-equations in combination with the proposed method is another approach to calculating accurate propagation constants of optical waveguides with both the step-asymmetrical and symmetrical graded index profile. In comparison with other published methods, the proposed method has the advantages of the simplicity and considerable accuracy.
    • 基金项目: 国家自然科学基金(批准号: 61177054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177054)
    [1]

    Howerton M M, Moeller R P, Greenblatt A S, Krahenbuhl R 2000 IEEE Photon. Technol. Lett. 12 792

    [2]

    Xue T, Yu J, Yang T X, Ni W J, Li S C 2002 Acta Phys. Sin. 51 1521 (in Chinese) [薛挺, 于建, 杨天新, 倪文俊, 李世忱 2002 物理学报 51 1521]

    [3]

    Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王健 2008 物理学报 57 252]

    [4]

    Wei Z J, Wan W, Wang J D, Liao C J, Liu S H 2011 Acta Phys. Sin. 60 094216 (in Chinese) [魏正军, 万伟, 王金东, 廖常俊, 刘颂豪 2011 物理学报 60 094216]

    [5]

    Camy P, Román J E, Willems F W, Hempstead M, van der Plaats J C, Prel C, Béguin A, Koonen A M J, Wilkinson J S, Lerminiaux C 1996 IEEE Electron. Lett. 32 321

    [6]

    Koshiba M, Suzuki M 1982 \textit IEEE Electron. Lett. 18 579

    [7]

    Lagu R, Ramaswamy R 1986 IEEE J. Quantum Electron. 22 968

    [8]

    Shao G W, Jin G L 2009 Chin. Phys. B 18 1096

    [9]

    Goyal I C, Gallawa R L, Ghatak A K 1991 Opt. Lett. 16 30

    [10]

    Goyal I C, Jindal R, Ghatak A K 1997 IEEE J. Lightwave Technol. 15 2179

    [11]

    Popescu V A 2004 Opt. Commun. 234 177

    [12]

    Popescu V A 2006 Phys. Lett. A 349 220

    [13]

    Gedeon A 1974 Opt. Commun. 12 329

    [14]

    Janta J, \vCtyroky J 1978 Opt. Commun. 25 49

    [15]

    Feng X, Gar L Y 1994 IEEE J. Lightwave Technol. 12 443

    [16]

    Srivastava R, Kao C, Ramaswamy R V 1987 IEEE J. Ligthtwave Technol. 5 1605

    [17]

    Chung M S, Kim C M 2000 IEEE J. Ligthtwave Technol. 18 878

    [18]

    Cao Z Q, Jiang Y, Shen Q S, Dou X M, Chen Y L 1999 J. Opt. Soc. Am. A 16 2209

    [19]

    Zhan L, Cao Z Q 1998 J. Opt. Soc. Am. A 15 713

    [20]

    Zhu H D, Ding Y, Cao Z Q, Shen Q S 2005 Chin. Phys. Lett. 22 1580

    [21]

    Cao X Q, Liu Q, Jiang Y, Shen Q S, Dou X M 2001 J. Opt. Soc. Am. A 18 2161

    [22]

    Eghlidi M H, Mehrany K, Rashidian B 2005 J. Opt. Soc. Am. B 22 1521

    [23]

    Zariean N, Sarrafi P, Mehrany K, Rashidian B 2008 IEEE J. Quantum Electron. 44 324

    [24]

    Henry C H, Verbeek B H 1989 IEEE J. Ligthtwave Technol. 7 308

    [25]

    Wang L, Huang N 1999 IEEE J. Quantum Electron. 35 1351

    [26]

    Ghasemifard F, Shahabadi M 2011 J. Opt. 13 125703

    [27]

    Gric T, Cada M 2015 \textit J. Electromagn. Wave Appl. 29 124

    [28]

    Cao Z Q 2007 \textit Wave Guiding Optics (Beijing: Science Press) p61 (in Chinese) [曹庄琪 2007 导波光学(北京: 科学出版社) 第61页]

    [29]

    Conwell E 1973 Appl. Phys. Lett. 23 328

  • [1]

    Howerton M M, Moeller R P, Greenblatt A S, Krahenbuhl R 2000 IEEE Photon. Technol. Lett. 12 792

    [2]

    Xue T, Yu J, Yang T X, Ni W J, Li S C 2002 Acta Phys. Sin. 51 1521 (in Chinese) [薛挺, 于建, 杨天新, 倪文俊, 李世忱 2002 物理学报 51 1521]

    [3]

    Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王健 2008 物理学报 57 252]

    [4]

    Wei Z J, Wan W, Wang J D, Liao C J, Liu S H 2011 Acta Phys. Sin. 60 094216 (in Chinese) [魏正军, 万伟, 王金东, 廖常俊, 刘颂豪 2011 物理学报 60 094216]

    [5]

    Camy P, Román J E, Willems F W, Hempstead M, van der Plaats J C, Prel C, Béguin A, Koonen A M J, Wilkinson J S, Lerminiaux C 1996 IEEE Electron. Lett. 32 321

    [6]

    Koshiba M, Suzuki M 1982 \textit IEEE Electron. Lett. 18 579

    [7]

    Lagu R, Ramaswamy R 1986 IEEE J. Quantum Electron. 22 968

    [8]

    Shao G W, Jin G L 2009 Chin. Phys. B 18 1096

    [9]

    Goyal I C, Gallawa R L, Ghatak A K 1991 Opt. Lett. 16 30

    [10]

    Goyal I C, Jindal R, Ghatak A K 1997 IEEE J. Lightwave Technol. 15 2179

    [11]

    Popescu V A 2004 Opt. Commun. 234 177

    [12]

    Popescu V A 2006 Phys. Lett. A 349 220

    [13]

    Gedeon A 1974 Opt. Commun. 12 329

    [14]

    Janta J, \vCtyroky J 1978 Opt. Commun. 25 49

    [15]

    Feng X, Gar L Y 1994 IEEE J. Lightwave Technol. 12 443

    [16]

    Srivastava R, Kao C, Ramaswamy R V 1987 IEEE J. Ligthtwave Technol. 5 1605

    [17]

    Chung M S, Kim C M 2000 IEEE J. Ligthtwave Technol. 18 878

    [18]

    Cao Z Q, Jiang Y, Shen Q S, Dou X M, Chen Y L 1999 J. Opt. Soc. Am. A 16 2209

    [19]

    Zhan L, Cao Z Q 1998 J. Opt. Soc. Am. A 15 713

    [20]

    Zhu H D, Ding Y, Cao Z Q, Shen Q S 2005 Chin. Phys. Lett. 22 1580

    [21]

    Cao X Q, Liu Q, Jiang Y, Shen Q S, Dou X M 2001 J. Opt. Soc. Am. A 18 2161

    [22]

    Eghlidi M H, Mehrany K, Rashidian B 2005 J. Opt. Soc. Am. B 22 1521

    [23]

    Zariean N, Sarrafi P, Mehrany K, Rashidian B 2008 IEEE J. Quantum Electron. 44 324

    [24]

    Henry C H, Verbeek B H 1989 IEEE J. Ligthtwave Technol. 7 308

    [25]

    Wang L, Huang N 1999 IEEE J. Quantum Electron. 35 1351

    [26]

    Ghasemifard F, Shahabadi M 2011 J. Opt. 13 125703

    [27]

    Gric T, Cada M 2015 \textit J. Electromagn. Wave Appl. 29 124

    [28]

    Cao Z Q 2007 \textit Wave Guiding Optics (Beijing: Science Press) p61 (in Chinese) [曹庄琪 2007 导波光学(北京: 科学出版社) 第61页]

    [29]

    Conwell E 1973 Appl. Phys. Lett. 23 328

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [3] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [4] 陈园园, 杨盼杰, 张玮芝, 阎晓娜. 光子晶体理论研究的新方法混合变分法. 物理学报, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [5] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [6] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [7] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [8] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解. 物理学报, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [9] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析. 物理学报, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [10] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [11] 贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞. 领结形中空表面等离子体波导的传输特性. 物理学报, 2011, 60(5): 057301. doi: 10.7498/aps.60.057301
    [12] 王珏, 涂成厚, 张双根, 吕福云. 基于飞秒激光写制波导的PPKTP晶体倍频实验研究. 物理学报, 2010, 59(1): 307-310. doi: 10.7498/aps.59.307
    [13] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [14] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 微环耦合谐振光波导中的色散控制模型与数值仿真. 物理学报, 2008, 57(10): 6400-6403. doi: 10.7498/aps.57.6400
    [15] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强. 物理学报, 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [16] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计. 物理学报, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [17] 徐宏来, 张 鹏, 赵建林, 高瑀含, 叶知隽, 杨德兴. 会聚激光扫描铌酸锂晶体写入光波导时的最佳曝光间距. 物理学报, 2006, 55(6): 3100-3105. doi: 10.7498/aps.55.3100
    [18] 余和军, 夏金松, 余金中. 一种模拟倾斜折射率界面光波导的新方法. 物理学报, 2006, 55(3): 1023-1028. doi: 10.7498/aps.55.1023
    [19] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [20] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
计量
  • 文章访问数:  6572
  • PDF下载量:  5016
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-02-25
  • 刊出日期:  2015-07-05

/

返回文章
返回