搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多谐波脉冲星信号时延估计方法

宋佳凝 徐国栋 李鹏飞

引用本文:
Citation:

多谐波脉冲星信号时延估计方法

宋佳凝, 徐国栋, 李鹏飞

Multiple harmonic X-ray pulsar signal phase estimation method

Song Jia-Ning, Xu Guo-Dong, Li Peng-Fei
PDF
导出引用
  • 针对脉冲星导航技术中延时估计这一关键问题, 提出了频域上直接使用脉冲星信号测量到达时间集合进行时延估计的方法——多谐波脉冲星信号时延估计(MHSPE)方法. 该方法建立在频域上相位时延的极大似然估计的基础上, 通过高次谐波对脉冲星观测信号提取出各谐波相位的极大似然估计, 然后取频谱上各谐波的幅值进行归一化作为各谐波相位的权值, 最后取各谐波相位的加权平均作为该时刻的相位估计. 理论上证得MHSPE算法对相位的估计是无偏、一致的, 相比于频域上一次谐波的极大似然估计, MHSPE方法的信噪比随谐波数m的增加而增加, 当各谐波幅值相同时, 信噪比可提高m1/2倍; 与脉冲星信号时延的克拉美罗界比较, 脉冲星信号时域的导数在频域上的反映就是各谐波分量的数量, 因此随着谐波次数的增加脉冲星信号时延估计可极大趋近克拉美罗界. 采用RXTE航天器对Crab脉冲星的实测数据检验MHSPE方法的性能, 实验结果表明, 针对低信噪比的脉冲星信号, MHSPE可获得高精度的相位估计, 随观测时间增加, 估计精度快速收敛于克拉美罗界.
    Pulsars, a small portion of celestial sources that emit radiation at varying intensity, provide new possible navigation algorithms which are different from steady point sources. Time-delay estimation is one of the key aspects of pulsar-based navigation technology. Previous work for pulse phase estimation uses a maximum likelihood estimator (MLE) for the phase-in time domain, which is seen as one of the most useful phase estimators. However, the analytic solution for phase cannot be found using MLE. As a result, a brute-force method involving nested, iterative grid-searches is needed to solve this MLE issue, which leads to lots of computations. In order to solve this problem, a multiple harmonic X-ray pulsar signal phase estimation (MHSPE) method is proposed. This method uses the times of arrivals (TOAs) measured pulsar signal to estimate the time-delay in the frequency domain. In this paper, firstly we use the arrival time to derive the maximum-likehood (ML) estimation of phase-delay by fundamental frequency, then an analytic expression for the fundamental frequency phase is obtained. The MHSPE method based on the fundamental frequency phase equation, calculates different harmonic phases by generalizing the analytic expression of fundamental frequency phase, and the normalized amplitude of each harmonic in the spectrum is used as the weight of each harmonic phase. Finally, the weighted average of harmonic phases, which is given by the final analytic expression, is used as the estimation of the moment. To evaluate the MHSPE method, the error and variance equations are calculated and the MHSPE method is demonstrated to be unbiased and consistent. Moreover, by comparing with the ML estimation of the first harmonic, if the amplitudes of harmonic in the spectrum are almost the same, the signal-to-noise ratio (SNR) of MHSPE improves m1/2 times when the number of harmonic waves is m. Compared with the Cramer-Rao bound of pulsar time-delay estimation, the derivative of pulsar signal in the time domain reflects the number of harmonic waves in the frequency domain. Hence, the MHSPE can greatly approximate to the Cramer-Rao bound for the estimation of pulsar signal timedelay when the harmonic number increases. Finally, we utilize the TOAs of Crab pulsar, observed by Rossi X-ray timing explorer (RXTE) spacecraft, to verify the performance of MHSPE. The results show that for low SNR of pulsar signal, MHSPE can obtain high precision phase estimations. When the amplitude of the harmonic in the spectrum is larger, the estimation variance of the harmonic phase tends to be smaller. The projection orbit determined by MHSPE method can match the projection of RXTE in the direction of Crab pulsar, with the observed time increasing, the estimation accuracy converges rapidly to Cramer-Rao bound.
      通信作者: 徐国栋, xgdong_61@163.com
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号: 2008AA8051602)资助的课题.
      Corresponding author: Xu Guo-Dong, xgdong_61@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8051602).
    [1]

    Shuai P, Li M, Chen S L, Huang Z 2009 The principle and method the X-ray pulsar-Based navigation system (Beijing: China Astronautic Publishing House) p20 (in Chinese) [帅平, 李明, 陈绍龙, 黄震 2009 X射线脉冲星导航系统原理与方法(北京: 中国宇航出版社) 第20页]

    [2]

    Zhou Q Y, Ji J F, Wang T 2013 Acta Phys. Sin. 62 019701 (in Chinese) [周庆勇, 姬剑锋, 任红飞 2013 物理学报 62 019701]

    [3]

    Zhu J, Ji P Y 2008 Chin. Phys. B 17 356

    [4]

    Hewish A, Bell S J, Pilkington J D H, Scoptt P F, Collins R A 1968 Nature 217 709

    [5]

    Taylor J H 1992 Philos. Trans. Roy. Soc. 341 117

    [6]

    Liao S L, Vernon R J 2009 IEEE transactions on Antennas and Propagation 57 2068

    [7]

    Pines D J 2004 DAR-PA/TTO 571 4339

    [8]

    Xie Z H, Xu L P, Ni G R 2008 Acta Phys. Sin. 57 6683 (in Chinese) [谢振华, 许录平, 倪广仁 2008 物理学报 57 6683]

    [9]

    Su Z, Xu L P, Wang T 2011 Journal of Astronautics. 32 1256 (in Chinese) [苏哲, 许录平, 王婷 2011 宇航学报 32 1256]

    [10]

    Emadzadeh A A, Speyer J L, Golshan A 2009 AIAA Guidance, Navigation, and Control Conferenc,Chicago, August 10–13, 2009 p5974

    [11]

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701 (in Chinese) [孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701]

    [12]

    Emadzadeh A A, Speyer J L 2010 IEEE Transactions on Signal Processing 58 4484

    [13]

    Jahoda K, Swank J H, Cues A B, Stark M J, Strohmayer T, Zhang W 1996 Proc. SPIE 2808, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, United States, August 4, 1996 p59

    [14]

    Kay S M (translated by Huang J G) 1994 Modern Spectral Estimation: Theory and Ap-plication (Beijing: Science Press) pp326-331 (in Chinese) [Key S M 著 (黄建国 译) 1994 现代谱估计:原理与应用(北京: 科学出版社) 第326–331页]

    [15]

    Rawley L, Stinebring D, Taylor J 1986 Proceedings of the Eighteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Washington, December 1986 p453

    [16]

    Emadzadeh A A 2009 Ph. D. Dissertation (Los Angeles: University of California)

    [17]

    Li J X, Ke X Z 2011 Chinese Astronomy and Astrophysics 35 19

    [18]

    Nguyen D T, Renaux A, Boyer R 2014 IEEE Transactions on Aerospace and Electronic Systems 50 786

    [19]

    Golshan A R, Sheikh S I Proceedings of the 63rd Annual Meeting of the Institute of Navigation Cambridge, April 23-25, 2007, p413

  • [1]

    Shuai P, Li M, Chen S L, Huang Z 2009 The principle and method the X-ray pulsar-Based navigation system (Beijing: China Astronautic Publishing House) p20 (in Chinese) [帅平, 李明, 陈绍龙, 黄震 2009 X射线脉冲星导航系统原理与方法(北京: 中国宇航出版社) 第20页]

    [2]

    Zhou Q Y, Ji J F, Wang T 2013 Acta Phys. Sin. 62 019701 (in Chinese) [周庆勇, 姬剑锋, 任红飞 2013 物理学报 62 019701]

    [3]

    Zhu J, Ji P Y 2008 Chin. Phys. B 17 356

    [4]

    Hewish A, Bell S J, Pilkington J D H, Scoptt P F, Collins R A 1968 Nature 217 709

    [5]

    Taylor J H 1992 Philos. Trans. Roy. Soc. 341 117

    [6]

    Liao S L, Vernon R J 2009 IEEE transactions on Antennas and Propagation 57 2068

    [7]

    Pines D J 2004 DAR-PA/TTO 571 4339

    [8]

    Xie Z H, Xu L P, Ni G R 2008 Acta Phys. Sin. 57 6683 (in Chinese) [谢振华, 许录平, 倪广仁 2008 物理学报 57 6683]

    [9]

    Su Z, Xu L P, Wang T 2011 Journal of Astronautics. 32 1256 (in Chinese) [苏哲, 许录平, 王婷 2011 宇航学报 32 1256]

    [10]

    Emadzadeh A A, Speyer J L, Golshan A 2009 AIAA Guidance, Navigation, and Control Conferenc,Chicago, August 10–13, 2009 p5974

    [11]

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701 (in Chinese) [孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701]

    [12]

    Emadzadeh A A, Speyer J L 2010 IEEE Transactions on Signal Processing 58 4484

    [13]

    Jahoda K, Swank J H, Cues A B, Stark M J, Strohmayer T, Zhang W 1996 Proc. SPIE 2808, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, United States, August 4, 1996 p59

    [14]

    Kay S M (translated by Huang J G) 1994 Modern Spectral Estimation: Theory and Ap-plication (Beijing: Science Press) pp326-331 (in Chinese) [Key S M 著 (黄建国 译) 1994 现代谱估计:原理与应用(北京: 科学出版社) 第326–331页]

    [15]

    Rawley L, Stinebring D, Taylor J 1986 Proceedings of the Eighteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Washington, December 1986 p453

    [16]

    Emadzadeh A A 2009 Ph. D. Dissertation (Los Angeles: University of California)

    [17]

    Li J X, Ke X Z 2011 Chinese Astronomy and Astrophysics 35 19

    [18]

    Nguyen D T, Renaux A, Boyer R 2014 IEEE Transactions on Aerospace and Electronic Systems 50 786

    [19]

    Golshan A R, Sheikh S I Proceedings of the 63rd Annual Meeting of the Institute of Navigation Cambridge, April 23-25, 2007, p413

  • [1] 周庆勇, 魏子卿, 闫林丽, 孙鹏飞, 刘思伟, 冯来平, 姜坤, 王奕迪, 朱永兴, 刘晓刚, 明锋, 张奋, 贺珍妮. 面向综合定位导航授时系统的天地基脉冲星时间研究. 物理学报, 2021, 70(13): 139701. doi: 10.7498/aps.70.20210288
    [2] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [3] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [4] 李淑静, 张娜娜, 闫红梅, 徐忠孝, 王海. 铷原子D1线真空压缩光场的产生及态重构. 物理学报, 2018, 67(9): 094204. doi: 10.7498/aps.67.20172396
    [5] 逯志宇, 任衍青, 巴斌, 王大鸣, 张杰. 基于分段信号相关累加的变速度多站联合直接定位方法. 物理学报, 2017, 66(2): 020503. doi: 10.7498/aps.66.020503
    [6] 周庆勇, 刘思伟, 郝晓龙, 姬剑锋, 贺珍妮, 张彩红. 空间X射线观测确定脉冲星星历表参数精度分析. 物理学报, 2016, 65(7): 079701. doi: 10.7498/aps.65.079701
    [7] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [8] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [9] 贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩. 一种脉冲星信号模拟新方法. 物理学报, 2014, 63(21): 219701. doi: 10.7498/aps.63.219701
    [10] 周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军. 基于X射线脉冲星导航的模拟调制仿真源研究. 物理学报, 2013, 62(11): 119701. doi: 10.7498/aps.62.119701
    [11] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [12] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法. 物理学报, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [13] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [14] 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法. 物理学报, 2012, 61(6): 069701. doi: 10.7498/aps.61.069701
    [15] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [16] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [17] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [18] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, 2011, 60(2): 029701. doi: 10.7498/aps.60.029701
    [19] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测. 物理学报, 2011, 60(4): 049701. doi: 10.7498/aps.60.049701
    [20] 李建勋, 柯熙政. 基于循环平稳信号相干统计量的脉冲星周期估计新方法. 物理学报, 2010, 59(11): 8304-8310. doi: 10.7498/aps.59.8304
计量
  • 文章访问数:  3176
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-09-21
  • 刊出日期:  2015-11-05

多谐波脉冲星信号时延估计方法

  • 1. 哈尔滨工业大学, 卫星技术研究所, 哈尔滨 150001;
  • 2. 哈尔滨理工大学, 电气与电子工程学院, 哈尔滨 150001
  • 通信作者: 徐国栋, xgdong_61@163.com
    基金项目: 国家高技术研究发展计划(863计划)(批准号: 2008AA8051602)资助的课题.

摘要: 针对脉冲星导航技术中延时估计这一关键问题, 提出了频域上直接使用脉冲星信号测量到达时间集合进行时延估计的方法——多谐波脉冲星信号时延估计(MHSPE)方法. 该方法建立在频域上相位时延的极大似然估计的基础上, 通过高次谐波对脉冲星观测信号提取出各谐波相位的极大似然估计, 然后取频谱上各谐波的幅值进行归一化作为各谐波相位的权值, 最后取各谐波相位的加权平均作为该时刻的相位估计. 理论上证得MHSPE算法对相位的估计是无偏、一致的, 相比于频域上一次谐波的极大似然估计, MHSPE方法的信噪比随谐波数m的增加而增加, 当各谐波幅值相同时, 信噪比可提高m1/2倍; 与脉冲星信号时延的克拉美罗界比较, 脉冲星信号时域的导数在频域上的反映就是各谐波分量的数量, 因此随着谐波次数的增加脉冲星信号时延估计可极大趋近克拉美罗界. 采用RXTE航天器对Crab脉冲星的实测数据检验MHSPE方法的性能, 实验结果表明, 针对低信噪比的脉冲星信号, MHSPE可获得高精度的相位估计, 随观测时间增加, 估计精度快速收敛于克拉美罗界.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回