搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种自适应前向均衡与判决均衡组合结构及变步长改进算法

郝学元 颜晓红 钱丽霞

引用本文:
Citation:

一种自适应前向均衡与判决均衡组合结构及变步长改进算法

郝学元, 颜晓红, 钱丽霞

The novel feed forward and decision feedback equalizer structures and improved variable step algorithm

Hao Xue-Yuan, Yan Xiao-Hong, Qian Li-Xia
PDF
导出引用
  • 信号在超长线缆传输中, 线缆的线间串扰及温度梯度变化造成噪声干扰, 特别是线缆介电损耗和肌肤效应的影响, 导致接收端信号频率色散失真严重, 难以恢复原始信号, 限制了传输速度. 另外, 在页岩气、煤层气等资源勘探领域, 在用长缆传输数据时, 还要求传输高精度同步脉冲信号, 用于采集数据相位的标定. 线缆的传输效应及噪声干扰严重影响了接收端的信号同步, 造成采集数据相位失真. 本文针对信号在长缆传输中的非线性失真及衰减问题, 提出了一种新型均衡结构, 并针对新模型给出了最优系数组合. 在此基础上针对改进的结构提出了一种基于反正切函数的变步长算法, 该算法配合三误差因子, 形成收敛函数, 该函数具有收敛速度快, 稳态误差小的优点. 改进后的自适应组合均衡器计算复杂度低, 收敛快, 信道跟踪能力强, 加快了数据处理速度, 同时能较好地应对信道的时变性. 仿真结果表明, 基于新变步长算法的自适应组合均衡器, 性能上提高了50%, 并且消除了噪声干扰和码间干扰, 测试实验表明, 在无中继超长缆(7 km以上)传输中, 信号速度提高了一倍.
    Skin effect and dielectric loss in super-long cable will cause nonlinear attenuation at different signal frequency, and in addition, coupling noise and thermal noise also cause signal distortion at the receiver end. These factors seriously affect the signal transmission speed in the super-long cable. Especially, in the field of exploration of shale gas and bed methane, the transmission cable is also used to transport high-precision synchronization pulse signal, and the synchronization pulse must reach the microsecond accuracy, which is used for data phase calibration. A synchronization signal is a high frequency signal, which suffers more severe attenuation and noise interference. At the receiving end, the sync pulse signal will be drowned in the noise environment, and so it is difficult to restore the original signal.#br#Although fiber can achieve a high transfer rate, but the fiber cable cannot transmit power energy; in addition, the tensile strength and heat resistance of the fiber are much worse than copper cable, these weaknesses limit its application in such industry. Therefore, an effective balancing algorithm is necessary to overcome the propagation effects and interference in a super-long copper cable. However, conventional equalization techniques have well-balanced effect for the short-range communications, but for the long-distance communication, they often have poorly balanced results. In order to solve the above problem and improve the long cable signal transmission speed, this paper presents a new balanced portfolio structure; the new structure uses feed-forward equalizer (FFE) as the pre-stage, and decision-feedback equalizer (DFE) as the post stage to form a new structure. The combination structures can effectively utilize the flexibility of FFE and overcome the problem of error diffusion in DFE. By mathematical modeling and simulation, this paper gives the best combination factors. Furthermore, based on the improved structure, a new convergence algorithm is proposed, which uses the arc tangent function combined with three error converge factors to form a converging function, and it has the advantages of fast convergence and steady-state error. Simulation results show that the FFE-DFE combination equalizer has low computational complexity, fast convergence, and strong channel tracking capability; in addition, it can speed up the data processing speed, and better respond to the real variation of the channel. Simulation results show also that the performance is improved by 50% by eliminating inter-symbol interference and noise.#br#The real circuit board based on the new algorithm have been tested in the East China Petroleum Bureau, the test results show that the algorithm can rectify 160 dB signal distortion, and the transmission speed can reach 5 Mbps in 6 dB signal to noise ratio.
      通信作者: 郝学元, haoxy@njupt.edu.cn
    • 基金项目: 国家科技重大专项, (批准号:2011ZX05035-003-003)、江苏省高校研究生科研创新计划项目(批准号:CXZZ13_0472)资助的课题.
      Corresponding author: Hao Xue-Yuan, haoxy@njupt.edu.cn
    • Funds: Project supported by the National Science and Technology major projects, (Grant No. 2011ZX05035-003-003), and the College Graduate Research and Innovation Projects in Jiangsu Province, China (Grant No. CXZZ13_0472).
    [1]

    Sun H J, Yan X H, Hao X Y 2015 Acta Phys. Sin. 64 018402 (in Chinese) [孙华娟, 颜晓红, 郝学元 2015 物理学报 64 018402]

    [2]

    Zhang J X, Lu T, Li Q, Zhang Y, Li Q, Chen W, Gu Q S, Wu R Q 2009 Well Logging Technology 33 84 (in Chinese) [张菊茜, 卢涛, 李群, 张艺, 李谦, 陈伟, 顾庆水, 伍瑞卿 2009 测井技术 3384]

    [3]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 物理学报 57 1753]

    [4]

    M Syed Ali, R Saravanakumar 2014 Chin. Phys. B 23 120201

    [5]

    Huang J W, Feng J C 2014 Chin. Phys. B 23 070504

    [6]

    Zhang Z M, Wang B Z, Liang M S, Ji Q, Song G B 2014 Chin. Phys. B 23 048403

    [7]

    Zhao H Q, Zhang J S 2008 Acta Phys. Sin. 57 3996 (in Chinese) [赵海全, 张家树 2008 物理学报 57 3996]

    [8]

    Kudoh Y, Fukaishi M, Mizuno M 2003 IEEE J. Solid-State Circuits 38 741

    [9]

    Ali W AE, Mohamed D A E, Hassan A, H, G 2013 Antennas and Propagation Conference on Loughborough, 2013 p624

    [10]

    Shuqi Wang, Yin Shi 2009 Industrial and Information Systems, International Conference on Haikou 2009 p293

    [11]

    R Arablouei, K Dogancay 2011 Electronics Letters 47 1101

    [12]

    Li H Y, Wan J W, Zhou L Z 1999 Journal of National University of Defense Technology 21 94 (in Chinese) [李盈颖, 万建伟, 周良柱 1999 国防科技大学学报 21 94]

    [13]

    Gu H Y, Chen L P 2006 Journal of Data Acquisition & Processing 21 15 (in Chinese) [顾海燕, 陈黎平 2006 数据采集与处理 21 15]

    [14]

    Luo X D, Jia Z H, Wang Q 2006 Chinese Journal of Electronics 34 1123 (in Chinese) [罗小东, 贾振红 2006 电子学报 34 1123]

    [15]

    W Y Chen, R A Haddad, 2008 Circuits and Systems 1 423

    [16]

    Xueli Wu, Liang Gao, Zizhong Tan 2013 Measurement, Information and Control 1 533

  • [1]

    Sun H J, Yan X H, Hao X Y 2015 Acta Phys. Sin. 64 018402 (in Chinese) [孙华娟, 颜晓红, 郝学元 2015 物理学报 64 018402]

    [2]

    Zhang J X, Lu T, Li Q, Zhang Y, Li Q, Chen W, Gu Q S, Wu R Q 2009 Well Logging Technology 33 84 (in Chinese) [张菊茜, 卢涛, 李群, 张艺, 李谦, 陈伟, 顾庆水, 伍瑞卿 2009 测井技术 3384]

    [3]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 物理学报 57 1753]

    [4]

    M Syed Ali, R Saravanakumar 2014 Chin. Phys. B 23 120201

    [5]

    Huang J W, Feng J C 2014 Chin. Phys. B 23 070504

    [6]

    Zhang Z M, Wang B Z, Liang M S, Ji Q, Song G B 2014 Chin. Phys. B 23 048403

    [7]

    Zhao H Q, Zhang J S 2008 Acta Phys. Sin. 57 3996 (in Chinese) [赵海全, 张家树 2008 物理学报 57 3996]

    [8]

    Kudoh Y, Fukaishi M, Mizuno M 2003 IEEE J. Solid-State Circuits 38 741

    [9]

    Ali W AE, Mohamed D A E, Hassan A, H, G 2013 Antennas and Propagation Conference on Loughborough, 2013 p624

    [10]

    Shuqi Wang, Yin Shi 2009 Industrial and Information Systems, International Conference on Haikou 2009 p293

    [11]

    R Arablouei, K Dogancay 2011 Electronics Letters 47 1101

    [12]

    Li H Y, Wan J W, Zhou L Z 1999 Journal of National University of Defense Technology 21 94 (in Chinese) [李盈颖, 万建伟, 周良柱 1999 国防科技大学学报 21 94]

    [13]

    Gu H Y, Chen L P 2006 Journal of Data Acquisition & Processing 21 15 (in Chinese) [顾海燕, 陈黎平 2006 数据采集与处理 21 15]

    [14]

    Luo X D, Jia Z H, Wang Q 2006 Chinese Journal of Electronics 34 1123 (in Chinese) [罗小东, 贾振红 2006 电子学报 34 1123]

    [15]

    W Y Chen, R A Haddad, 2008 Circuits and Systems 1 423

    [16]

    Xueli Wu, Liang Gao, Zizhong Tan 2013 Measurement, Information and Control 1 533

  • [1] 刘琪华, 梅佳雪, 王金栋, 张福民, 曲兴华. 基于锁模光学频率梳的高速数据传输. 物理学报, 2024, 73(4): 044204. doi: 10.7498/aps.73.20231384
    [2] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [3] 郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月. 一种无线传感器网络健壮性可调的能量均衡拓扑控制算法. 物理学报, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [4] 孙华娟, 颜晓红, 郝学元. 多值数据的自适应脉冲宽度调制预加重方法. 物理学报, 2015, 64(1): 018402. doi: 10.7498/aps.64.018402
    [5] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计. 物理学报, 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [6] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [7] 韩光, 孙诚, 吴迪, 陈伟荣. Invar合金的电子化学势均衡判据. 物理学报, 2014, 63(6): 068101. doi: 10.7498/aps.63.068101
    [8] 何成兵, 黄建国, 孟庆微, 张群飞, 史文涛. 基于扩频码的单载波迭代频域均衡水声通信. 物理学报, 2013, 62(23): 234301. doi: 10.7498/aps.62.234301
    [9] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [10] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [11] 郭业才, 胡苓苓, 丁锐. 基于量子粒子群优化的正交小波加权多模盲均衡算法. 物理学报, 2012, 61(5): 054304. doi: 10.7498/aps.61.054304
    [12] 徐新智, 郭静波. 基于状态估计的混沌直扩信号联合均衡与解调. 物理学报, 2011, 60(2): 020510. doi: 10.7498/aps.60.020510
    [13] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [14] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解. 物理学报, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [15] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [16] 赵海全, 张家树, 曾祥萍. 混沌通信系统中非线性信道的自适应神经Legendre正交多项式均衡. 物理学报, 2007, 56(4): 1975-1982. doi: 10.7498/aps.56.1975
    [17] 朱 涛, 饶云江, 王若崑, 王久玲. 基于包层旋转折变型光纤光栅的动态增益均衡器. 物理学报, 2006, 55(9): 4720-4724. doi: 10.7498/aps.55.4720
    [18] 李建芬, 李 农, 林 辉. 适合传输快变信息信号的混沌调制保密通信. 物理学报, 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [19] 詹杰民, 李毓湘. 温盐双扩散均衡场中的振荡现象. 物理学报, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [20] 陈小源, 朱熙文. 激光微波双共振导致的基态碱原子的非均衡分布. 物理学报, 1987, 36(4): 436-443. doi: 10.7498/aps.36.436
计量
  • 文章访问数:  6424
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-12
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-12-05

/

返回文章
返回