搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锁模光学频率梳的高速数据传输

刘琪华 梅佳雪 王金栋 张福民 曲兴华

引用本文:
Citation:

基于锁模光学频率梳的高速数据传输

刘琪华, 梅佳雪, 王金栋, 张福民, 曲兴华

High-speed data transmission based on mode-locked optical frequency comb

Liu Qi-Hua, Mei Jia-Xue, Wang Jin-Dong, Zhang Fu-Min, Qu Xing-Hua
PDF
HTML
导出引用
  • 大数据时代网络数据流量的爆炸式增长给通信系统的容量和数据传输速率带来极大的挑战. 本文基于锁模光学频率梳的宽光谱范围和高相位相干性提出了一种高频正交幅度调制信号生成方法, 通过电光调制器对光学频率梳进行幅度相位整形并下变频至射频域, 生成携带编码信息的高速、高阶、低相位噪声的调制信号, 再结合锁模光学频率梳窄线宽、多波长的特性, 仅使用单个激光器即可实现基于波分复用技术的大规模并行高速通信. 仿真验证了该方案的可行性, 随后在100 m的自由空间光链路中使用光子微波信号进行16元正交幅度调制通信实验, 实现了误码率低于10–6的14 Gbit/s数据传输.
    With the rapid development of emerging technologies such as multimedia services, live broadcasting, video conferencing, and high-definition television, traditional radio frequency communication is unable to meet people 's growing demand for communication capacity and transmission rate. In recent years, optical communication has received extensive attention from the industrial and scientific communities due to its advantages of large bandwidth, high speed, low power consumption, light weight, and strong anti-interference ability. As an emerging light source, the optical frequency comb (OFC) has a wide spectral range, multi-wavelength, high stability, and good phase coherence, providing a new idea for studying microwave signals with simple system structure, strong tunability and high frequency stability. At the same time, the multi-optical mode characteristics of OFC are compatible with the current communication system based on wavelength division multiplexing technology. Hundreds of laser arrays in a traditional communication system can be replaced by only one laser, which greatly reduces the power consumption of the system.Combining the above advantages, in this paper, a large-scale parallel high-speed optical communication system based on mode-locked OFC is proposed. The linewidth of the OFC locked to the rubidium atomic clock can reach 1 Hz, which is sufficient to support the transmission of high-order modulation signals. The electro-optic modulators are used to adjust the amplitude and phase of each optical mode of the mode-locked OFC and self-coherently map to the RF domain. The high-speed high-order modulation signal with coded information is obtained by frequency screening through a narrow-band filter. The communication capability of the microwave photonic modulation signal in the 16 quadrature amplitude modulation (QAM) format is verified by simulation. The 16QAM communication with the rate of 2, 6, and 14 Gbit/s is realized by using the photonic microwave signal on the 100 m space optical link, and the bit error rate (BER) is less than 10–6. The proposed large-scale parallel optical communication system based on mode-locked OFC can achieve high-speed information transmission with a compact system structure, which is suitable for inter-satellite communication, emergency communication, military communication and other fields.
      通信作者: 王金栋, jdwang@cqu.edu.cn ; 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0705701)资助的课题.
      Corresponding author: Wang Jin-Dong, jdwang@cqu.edu.cn ; Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFF0705701).
    [1]

    Toyoshima M 2005 J. Opt. Netw 4 300Google Scholar

    [2]

    Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tutorials 19 57Google Scholar

    [3]

    Yin F F, Yin Z K, Xie X Z, Dai Y T, Xu K 2021 Opt. Express 29 17839Google Scholar

    [4]

    Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar

    [5]

    Ataie V, Esman D, Kuo B P P, Alic N, Radic S 2015 Science 350 1343Google Scholar

    [6]

    Li W Z, Yao J P 2010 IEEE Photonics Technol. Lett. 22 24Google Scholar

    [7]

    Chen Y 2018 IEEE Photonics J. 10 1Google Scholar

    [8]

    Kittlaus E A, Eliyahu D, Ganji S, Williams S, Matsko A B, Cooper K B, Forouhar S 2021 Nat. Commun. 12 4397Google Scholar

    [9]

    Diddams S A, Vahala K, Udem T 2020 Science 369 6501Google Scholar

    [10]

    Cundiff S T, Weiner A M 2010 Nat. Photonics 4 760Google Scholar

    [11]

    Wang B C, Yang Z J, Sun S M, Yi X 2022 Photonics Res. 10 932Google Scholar

    [12]

    Tan M X, Xu X Y, Boes A, Corcoran B, Wu J Y, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 J. Lightwave Technol. 38 6221Google Scholar

    [13]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [14]

    Shao W, Wang Y, Jia S W, Xie Z, Gao D R, Wang W, Zhang D Q, Liao P X, Little B E, Chu S T, Zhao W, Zhang W F, Wang W Q, Xie X P 2022 Photonics Res. 10 2802Google Scholar

    [15]

    Rademacher G, Puttnam B J, Luís R S, Eriksson T A, Fontaine N K, Mazur M, Chen H S, Ryf R, Neilson D T, Sillard P, Achten F, Awaji Y, Furukawa H 2021 Nat. Commun. 12 4238Google Scholar

    [16]

    Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 Nat. Commun. 11 2568Google Scholar

    [17]

    陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar

    Chen J W, Wang J D, Qu X H, Zhang F M 2019 Acta Phys. Sin. 68 190602Google Scholar

    [18]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [19]

    Jang H, Kim B S, Chun B J, Kang H J, Jang Y S, Kim Y W, Kim Y J, Kim S W 2019 Sci. Rep. 9 7652Google Scholar

    [20]

    Kim Y J, Jin J H, Kim Y S, Hyun S W, Kim S W 2008 Opt. Express. 16 258Google Scholar

    [21]

    Kang H J, Yang J, Chun B J, Jang H, Kim B S, Kim Y J, Kim S W 2019 Nat. Commun. 10 4438Google Scholar

    [22]

    Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J 2012 IEEE Photonics Technol. Lett. 24 61Google Scholar

    [23]

    3GPP. TS 38.141: 5G NR Base Station (BS) RF Conformance Test Methods and Requirements https://www.ccsa.org.cn/tgpp/ [2023-10-6

  • 图 1  射频频率梳生成原理

    Fig. 1.  Principle of radio frequency comb generation.

    图 2  基于锁模光学频率梳的大规模并行高速光通信原理 (a)光子微波信号调制; (b)光相干接收; (c)基于光学频率梳的大规模并行数据传输; (d)载波光源提取

    Fig. 2.  Principle of massively parallel high-speed optical communication system based on mode-locked optical frequency comb: (a) Photonic microwave signal modulation; (b) optical coherent reception; (c) massively parallel data transmission based on optical frequency comb; (d) carrier light source extraction.

    图 3  光学频率梳自拍频生成射频信号 (a) 射频频率梳时域波形; (b) 窄带滤波后的时域波形

    Fig. 3.  RF signal generated by the self-beat of optical frequency comb: (a) Time domain waveform of RF comb; (b) time domain waveform after narrowband filtered.

    图 4  16 QAM光子微波信号生成过程 (a)编码信号时域; (b)编码信号频域及带通滤波效果; (c) 2 Gbit/s的16 QAM信号时域波形; (d) 12 Gbit/s的16 QAM信号时域波形; (e) 2 Gbit/s的16 QAM星座图; (f) 12 Gbit/s的16 QAM星座图

    Fig. 4.  Process of the generation of 16 QAM microwave photonic signal: (a) Time-domain of encoded signal; (b) frequency-domain of encoded signal and the results after band-pass filtering; (c) waveform of 2 Gbit/s 16 QAM signal; (d) waveform of 12 Gbit/s 16 QAM signal; (e) constellation diagram of 2 Gbit/s 16 QAM; (f) constellation diagram of 12 Gbit/s 16 QAM.

    图 5  自由空间光通信实验 (a) 实验装置. OSA, 光谱分析仪; OSC, 示波器; BPD, 平衡探测器; OH, 光混频器; AWG, 任意波形发生器; TBPF, 可调谐带通滤波器; DC, 直流电源; IQM, 同相/正交调制器; EDFA, 掺铒光纤放大器; IM, 强度调制器; PM, 相位调制器; PD, 光探测器; Amp, 功率放大器; Tx., 发射器; Rx., 接收器. (b) 实验环境

    Fig. 5.  Free space optical communication experiment: (a) Experimental installation. OSA, optical spectrum analyzer; OSC, oscilloscope; BPD, balance photodetector; OH, optical hybrid; AWG, arbitrary waveform generator; TBPF, tunable bandpass filter; DC, direct current; IQM, in-phase/quadrature modulator; EDFA, erbium doped fiber amplifier; IM, intensity modulator; PM, phase modulator; PD, photodetector; Amp, amplifier; Tx., transmitter; Rx., receiver. (b) experimental scenario.

    图 6  2 Gbit/s的16 QAM光子微波信号 (a) 时域; (b) 频域

    Fig. 6.  16 QAM microwave photonic signal at 2 Gbit/s: (a) Time domain; (b) frequency domain.

    图 7  100 m自由空间光通信实验结果(EVM, 误差矢量幅度) (a)—(c) 接收调制光谱; (d)—(f) 星座图. (a), (d) 2 Gbit/s; (b), (e) 6 Gbit/s; (c), (f) 14 Gbit/s

    Fig. 7.  Experimental results of 100 m free space optical communication (EVM, error vector magnitude): (a)–(c) Received modulation spectrum; (d)–(f) constellation diagram. (a), (d) 2 Gbit/s; (b), (e) 6 Gbit/s; (c), (f) 14 Gbit/s.

  • [1]

    Toyoshima M 2005 J. Opt. Netw 4 300Google Scholar

    [2]

    Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tutorials 19 57Google Scholar

    [3]

    Yin F F, Yin Z K, Xie X Z, Dai Y T, Xu K 2021 Opt. Express 29 17839Google Scholar

    [4]

    Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar

    [5]

    Ataie V, Esman D, Kuo B P P, Alic N, Radic S 2015 Science 350 1343Google Scholar

    [6]

    Li W Z, Yao J P 2010 IEEE Photonics Technol. Lett. 22 24Google Scholar

    [7]

    Chen Y 2018 IEEE Photonics J. 10 1Google Scholar

    [8]

    Kittlaus E A, Eliyahu D, Ganji S, Williams S, Matsko A B, Cooper K B, Forouhar S 2021 Nat. Commun. 12 4397Google Scholar

    [9]

    Diddams S A, Vahala K, Udem T 2020 Science 369 6501Google Scholar

    [10]

    Cundiff S T, Weiner A M 2010 Nat. Photonics 4 760Google Scholar

    [11]

    Wang B C, Yang Z J, Sun S M, Yi X 2022 Photonics Res. 10 932Google Scholar

    [12]

    Tan M X, Xu X Y, Boes A, Corcoran B, Wu J Y, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 J. Lightwave Technol. 38 6221Google Scholar

    [13]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [14]

    Shao W, Wang Y, Jia S W, Xie Z, Gao D R, Wang W, Zhang D Q, Liao P X, Little B E, Chu S T, Zhao W, Zhang W F, Wang W Q, Xie X P 2022 Photonics Res. 10 2802Google Scholar

    [15]

    Rademacher G, Puttnam B J, Luís R S, Eriksson T A, Fontaine N K, Mazur M, Chen H S, Ryf R, Neilson D T, Sillard P, Achten F, Awaji Y, Furukawa H 2021 Nat. Commun. 12 4238Google Scholar

    [16]

    Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 Nat. Commun. 11 2568Google Scholar

    [17]

    陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar

    Chen J W, Wang J D, Qu X H, Zhang F M 2019 Acta Phys. Sin. 68 190602Google Scholar

    [18]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [19]

    Jang H, Kim B S, Chun B J, Kang H J, Jang Y S, Kim Y W, Kim Y J, Kim S W 2019 Sci. Rep. 9 7652Google Scholar

    [20]

    Kim Y J, Jin J H, Kim Y S, Hyun S W, Kim S W 2008 Opt. Express. 16 258Google Scholar

    [21]

    Kang H J, Yang J, Chun B J, Jang H, Kim B S, Kim Y J, Kim S W 2019 Nat. Commun. 10 4438Google Scholar

    [22]

    Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J 2012 IEEE Photonics Technol. Lett. 24 61Google Scholar

    [23]

    3GPP. TS 38.141: 5G NR Base Station (BS) RF Conformance Test Methods and Requirements https://www.ccsa.org.cn/tgpp/ [2023-10-6

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响. 物理学报, 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 李娟, 刘鹏, 项晓, 刘涛, 董瑞芳, 张首刚. 空间走离对量子光学频率梳压缩特性的影响. 物理学报, 2023, 72(8): 084206. doi: 10.7498/aps.72.20222343
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [5] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, 2019, 68(13): 134204. doi: 10.7498/aps.68.20190266
    [6] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [7] 彭星, 孔令豹. 基于室内可见光通信技术的新型两级光学接收天线设计与分析. 物理学报, 2018, 67(9): 094201. doi: 10.7498/aps.67.20172341
    [8] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法. 物理学报, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [9] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [10] 王云, 蓝天, 倪国强. 室内可见光通信复合光学接收端设计与分析. 物理学报, 2017, 66(8): 084207. doi: 10.7498/aps.66.084207
    [11] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [12] 冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华. 混沌与湍流大气中的光通信. 物理学报, 2016, 65(8): 084207. doi: 10.7498/aps.65.084207
    [13] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [14] 张逸伦, 蓝天, 高明光, 赵涛, 沈振民. 二级级联式室内可见光通信光学接收天线设计. 物理学报, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [15] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [16] 莫秋燕, 赵彦立. 光通信用雪崩光电二极管(APD)频率响应特性研究. 物理学报, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [17] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [18] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [19] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [20] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
计量
  • 文章访问数:  1889
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-25
  • 修回日期:  2023-10-21
  • 上网日期:  2023-11-17
  • 刊出日期:  2024-02-20

/

返回文章
返回