搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属氧化物薄膜晶体管的高速行集成驱动电路

张立荣 马雪雪 王春阜 李冠明 夏兴衡 罗东向 吴为敬 徐苗 王磊 彭俊彪

引用本文:
Citation:

基于金属氧化物薄膜晶体管的高速行集成驱动电路

张立荣, 马雪雪, 王春阜, 李冠明, 夏兴衡, 罗东向, 吴为敬, 徐苗, 王磊, 彭俊彪

High speed gate driver circuit basd on metal oxide thin film transistors

Zhang Li-Rong, Ma Xue-Xue, Wang Chun-Fu, Li Guan-Ming, Xia Xing-Heng, Luo Dong-Xiang, Wu Wei-Jing, Xu Miao, Wang Lei, Peng Jun-Biao
PDF
导出引用
  • 本文提出了一种基于非晶铟锌氧化物薄膜晶体管的高速行集成驱动电路, 该电路采用输入级复用的驱动结构, 一级输入级驱动三级输出级, 不仅减少电路输入级2/3晶体管的数量, 实现AMOLED或AMLCD显示屏的窄边框显示, 而且输入级的工作频率是输出级的1/3, 该结构适用于高速驱动电路. 电路内部产生了三次电容耦合效应, 每一次电容耦合效应都可以提高相应节点的电压, 保证了信号完整传输. 输出级采用了一个二极管接法的薄膜晶体管, 该薄膜晶体管连接了输出级的控制信号和上拉薄膜晶体管的栅极, 利用的每一级输出级输出时所产生的电容耦合效应, 增加上拉薄膜晶体管的栅极电压, 有效地提高电路输出能力和工作速度. 仿真表明电路能够输出脉宽达到4 s速度. 最后成功的制作了10级行集成驱动电路, 包括10级输入级电路和30级输出级电路, 负载为10 k和110 pF, 实验结果验证, 该电路满足4 k8 k 显示屏在120 Hz刷新频率下的驱动需求.
    This paper presents a new high speed gate driver circuit driven by In-Zn-O thin film transistors. Two methods are employed to improve the speed of this dirver: First, the input stage multiplex structure is adopted, one input stage drives three output stages; this could reduce the quantity of thin film transistors and also could achieve the narrow bezels in the AMOLED or AMLCD displays. Even the work frequency of the input stage becomes 1/3 of the output stage. When the speed of the circuit increass, there is enough time for input stage charging and discharging. So this kind of driver is suitable for high speed driving method. Second, three times the capacitance coupled effect generated in the gate driver can pull up the voltage level of the key nodes in the circuit, ensuring the signal integrity, While the first time the effect generated in the input stage is to reduce the charge time of the cascade signal and improve the speed of input stage. The second time that generated between input stage and output stage contrbutes to the integrity of cascade ouput signal and output control signal. A diode-connected thin film transistor applied to connect the output control signal and the gate of pull-up thin film transistors in output stage generates the three time capacitance coupled effects. Since the capacitance coupled effect can pull up the gate voltage of the pull-up thin film transistors during output period, the driving ability of the pull-up thin film transistors and the working speed could be promoted effectively. Simulation result shows that the capacitance coupled effect of each key node can pull up the voltage level considerably and the gate driver can normally work at the speed of 4 s. Finally, ten stage gate driver circuits have been fabricated successfully including ten input stages and thirty output stages. The test result shows that the proposed gate driver could work normally with a load of R=5 k and C=100 pF. Furthermore, the high speed test result shows that the output signal pulse width of the circuit is 2 s meeting the driving demands of the 4 k8 k display at the frame rate of 120 Hz. The power consumption of the gate dirver circuit is measured in different resolutions under the frame frequencies of 60 and 120 Hz respectively.
      通信作者: 吴为敬, wuwj@scut.edu.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2015CB6500)、国家自然科学基金(批准号: 61204089)、广东省自然科学基金(批准号: S2012010008648, 2014A030310253)、广东省科技厅科技计划项目(批准号: 2013B090500015)、广州市珠江科技新星项目(批准号: 201506010015)、中国博士后科学基金(批准号: 2015M572313)和中央高校基本科研业务费(批准号: 2015ZM072, 2015ZM070) 资助的课题.
      Corresponding author: Wu Wei-Jing, wuwj@scut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2015CB6500), the National Natural Science Foundation of China (Grant No. 61204089), the Guangdong Natural Science Foundation, China (Grant Nos. S2012010008648, 2014A030310253), the Guangdong Province (Institute) Research Project, China (Grant No. 2013B090500015), the Pearl River ST Nova Program of Guangzhou, China (Grant No. 201506010015), the China Postdoctoral Science Foundation (Grant No. 2015M572313), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2015ZM072, 2015ZM070).
    [1]

    Liu B Q, Lan L F, Zou J H, Peng J B 2013 Acta Phys. Sin. 62 087302 (in Chinese) [刘佰全, 兰林锋, 邹建华, 彭俊彪 2013 物理学报 62 087302]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu Y, Wu W J, Li B, SI Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 思云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [4]

    Cao Y,Tao H,Zou J H, Xu M, Lan L F, Wang L,Peng J B 2012 Journal of South China University of Technology 40 1 (in Chinese) [曹镛, 陶洪, 邹建华, 徐苗, 兰林锋, 王磊, 彭俊彪 2012 华南理工大学学报(自然科学版) 40 1]

    [5]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [6]

    Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 物理学报 63 038501]

    [7]

    Zhou L, Xu M, Wu W J, Xia X H, Wang L, Peng J B 2015 Chinese Journal of Luminescence 36 577 (in Chinese) [周雷, 徐苗, 吴为敬, 夏兴衡, 王磊, 彭俊彪 2015 发光学报 36 577]

    [8]

    Chih L L, Chun D T, Min C C, Jian S Y 2011 Journal of Display Technology 7 10

    [9]

    Jae E P, Min K R, Chi S H, Shin H Y, Sang H K P, Sung M Y, Hong K L, Youn K K, Joon D K, Hwan S O, Kee C P 2012 Electron Device Letters 33 1144

    [10]

    Arokia N, Anil K, Kapil S, Peyman S, Sanjiv S, Denis S 2004 Journal of Solid-State Circuit 39 1477

    [11]

    Lee Y W, Kim S J, Lee S Y, Lee W G, Yoon K S, Park J W, Kwon J Y, Han M K 2012 Electrochemical and Solid-State Letters 15 H126

    [12]

    Binn K, Seung C C, Jeong S L, Sun J K, Yong H J, Soo Y Y, Chang D K, Min K H 2011 Transations On Electron Devices 58 3012

    [13]

    Wu W J, Li G M, Xia X H, Zhang L R, Zhou L, Xu M 2014 Journal Of Display Technology 10 523

    [14]

    Wu W J, Song X F, Zhang L R, Zhou L, Xu M, Wang L, Peng J B Transations On Electron Devices 61 3335

    [15]

    Binn K, Lee Y U, Han M K, Seung C C, Yong H J, Park K S, Kim C D 2011 Society for Information Display 27 1191

    [16]

    Li M, Lan L F, Xu M, Luo D X, Xiao P, Peng J B 2014 Solid State Electron 91 9

    [17]

    Di G, Dong H K, Man J S, Mallory M, Jin J 2012 Society for Information Display 3 38

  • [1]

    Liu B Q, Lan L F, Zou J H, Peng J B 2013 Acta Phys. Sin. 62 087302 (in Chinese) [刘佰全, 兰林锋, 邹建华, 彭俊彪 2013 物理学报 62 087302]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu Y, Wu W J, Li B, SI Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 思云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [4]

    Cao Y,Tao H,Zou J H, Xu M, Lan L F, Wang L,Peng J B 2012 Journal of South China University of Technology 40 1 (in Chinese) [曹镛, 陶洪, 邹建华, 徐苗, 兰林锋, 王磊, 彭俊彪 2012 华南理工大学学报(自然科学版) 40 1]

    [5]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [6]

    Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 物理学报 63 038501]

    [7]

    Zhou L, Xu M, Wu W J, Xia X H, Wang L, Peng J B 2015 Chinese Journal of Luminescence 36 577 (in Chinese) [周雷, 徐苗, 吴为敬, 夏兴衡, 王磊, 彭俊彪 2015 发光学报 36 577]

    [8]

    Chih L L, Chun D T, Min C C, Jian S Y 2011 Journal of Display Technology 7 10

    [9]

    Jae E P, Min K R, Chi S H, Shin H Y, Sang H K P, Sung M Y, Hong K L, Youn K K, Joon D K, Hwan S O, Kee C P 2012 Electron Device Letters 33 1144

    [10]

    Arokia N, Anil K, Kapil S, Peyman S, Sanjiv S, Denis S 2004 Journal of Solid-State Circuit 39 1477

    [11]

    Lee Y W, Kim S J, Lee S Y, Lee W G, Yoon K S, Park J W, Kwon J Y, Han M K 2012 Electrochemical and Solid-State Letters 15 H126

    [12]

    Binn K, Seung C C, Jeong S L, Sun J K, Yong H J, Soo Y Y, Chang D K, Min K H 2011 Transations On Electron Devices 58 3012

    [13]

    Wu W J, Li G M, Xia X H, Zhang L R, Zhou L, Xu M 2014 Journal Of Display Technology 10 523

    [14]

    Wu W J, Song X F, Zhang L R, Zhou L, Xu M, Wang L, Peng J B Transations On Electron Devices 61 3335

    [15]

    Binn K, Lee Y U, Han M K, Seung C C, Yong H J, Park K S, Kim C D 2011 Society for Information Display 27 1191

    [16]

    Li M, Lan L F, Xu M, Luo D X, Xiao P, Peng J B 2014 Solid State Electron 91 9

    [17]

    Di G, Dong H K, Man J S, Mallory M, Jin J 2012 Society for Information Display 3 38

  • [1] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [2] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [3] 陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华. 铁电负电容场效应晶体管研究进展. 物理学报, 2020, 69(13): 137701. doi: 10.7498/aps.69.20200354
    [4] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型. 物理学报, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [5] 马群刚, 周刘飞, 喻玥, 马国永, 张盛东. InGaZnO薄膜晶体管背板的栅极驱动电路静电释放失效研究. 物理学报, 2019, 68(10): 108501. doi: 10.7498/aps.68.20190265
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [8] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [9] 冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富. 基于单电子晶体管 - 金属氧化物场效应晶体管电路的离散混沌系统实现. 物理学报, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [10] 刘玉荣, 陈伟, 廖荣. 低工作电压聚噻吩薄膜晶体管. 物理学报, 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [11] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
    [12] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [13] 孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生. 有机薄膜晶体管中接触效应的研究. 物理学报, 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [14] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究. 物理学报, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [15] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应. 物理学报, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [16] 邱深玉, 蔡绍洪. 耗散介观电容耦合电路的量子效应. 物理学报, 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [17] 刘红侠, 郑雪峰, 郝 跃. 闪速存储器中应力诱生漏电流的产生机理. 物理学报, 2005, 54(12): 5867-5871. doi: 10.7498/aps.54.5867
    [18] 宋同强. 耗散介观电容耦合电路的量子化. 物理学报, 2004, 53(5): 1352-1356. doi: 10.7498/aps.53.1352
    [19] 龙超云, 刘波, 王心福. 耗散介观电容耦合电路的量子涨落. 物理学报, 2002, 51(1): 159-162. doi: 10.7498/aps.51.159
    [20] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落. 物理学报, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
计量
  • 文章访问数:  6912
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 修回日期:  2015-10-06
  • 刊出日期:  2016-01-20

/

返回文章
返回