搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子BB84协议在联合旋转噪音信道上的安全性分析

李剑 陈彦桦 潘泽世 孙风琪 李娜 黎雷蕾

引用本文:
Citation:

量子BB84协议在联合旋转噪音信道上的安全性分析

李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎雷蕾

Security analysis of BB84 protocol in the collective-rotation noise channel

Li Jian, Chen Yan-Hua, Pan Ze-Shi, Sun Feng-Qi, Li Na, Li Lei-Lei
PDF
导出引用
  • 多数在理想条件下设计的量子密码协议没有考虑实际通信中噪音的影响, 可能造成机密信息不能被准确传输, 或可能存在窃听隐藏在噪音中的风险, 因此分析噪音条件下量子密码协议的安全性具有重要的意义. 为了分析量子BB84协议在联合旋转噪音信道上的安全性, 本文采用粒子偏转模型, 对量子信道中的联合噪音进行建模, 定量地区分量子信道中噪音和窃听干扰; 并且采用冯诺依曼熵理论建立窃听者能窃取的信息量与量子比特误码率、噪音水平三者之间的函数关系, 定量地分析噪音条件下量子信道的安全性; 最后根据联合噪音模型及窃听者能窃取的信息量与量子比特误码率、噪音水平三者之间的关系, 定量地分析了量子BB84协议在联合噪音条件下的安全性并计算噪音临界点. 通过分析可知, 在已有噪音水平条件下, 窃听者最多能够从通信双方窃取25%的密钥, 但是Eve 的窃听行为会被检测出来, 这样Alice和Bob会放弃当前协商的密钥, 重新进行密钥协商, 直至确认没有Eve的窃听为止. 这个结果说明量子BB84协议在联合旋转噪音信道下的通信是安全的.
    Most of quantum cryptography protocols are designed under the ideal conditions without considering the impact of noise in actual communication; thus they may result in that the confidential information cannot be transmitted to the receiver accurately or eavesdroppers can steal the confidential information by mixing in noise. Therefore, analyzing the security of quantum cryptography protocols under noise conditions is of great significance. For the purpose of analyzing the security of quantum BB84 protocol in collective-rotation noise, firstly this paper introduces the quantum BB84 protocol, and considers the influence of environmental noise on it. An explanation should be stated that in a noise environment, the effects of noise and eavesdropping cannot be distinguished between each other. So the mechanism for which the error bit is simply used as the criterion to judge whether there exists eavesdropping in the BB84 protocol, cannot be used in the noise environment. The mechanism to judge whether there exists eavesdropping in quantum noise channel needs to be modified and improved for protecting the information. An initial qubit error rate can be set according to the noisy quantum channel. If the qubit error rate of the quantum communication channel is larger than that, it can be determined that the quantum channel is not secure and exists eavesdropping, no matter what the reason is. And on this basis, the collective-rotation noise model will be established in quantum channel by using the particle deflection model and distinguish the noise from the eavesdropping in quantum channel quantitatively, and the relationship of the amount of information that eavesdroppers can steal, the quantum bits error rate and the noise level will be analyzed by using the von Neumann entropy. Finally, the noise critical point will be calculated by using the collective noise model and the relationship between the amount of information that eavesdroppers can steal, at the quantum bits error rate, and the noise level. Through the analysis, we can know that in the existing noise level, the most of the eavesdropping can steal 25% of the key from the communication. However, the Eve's eavesdropping behavior will be detected, so that Alice and Bob will give up the current consultation key, and restart the key negotiation. This result shows that the quantum BB84 protocol is safe and secure in the collective-rotation noise channel. The research results of this paper will enrich the theory of quantum cryptography, and the innovation of security detection methods in quantum cryptographic protocols will help promote the process of practical quantum cryptography.
      通信作者: 陈彦桦, cyanhua2010@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61472048, 61402058, 61370194)、北京自然科学基金(批准号: 4152038)和中国博士后科学基金(批准号: 2014 M561826)资助的课题.
      Corresponding author: Chen Yan-Hua, cyanhua2010@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61472048, 61402058, 61370194), the Beijing Natural Science Foundation, China (Grant No. 4152038), and the China Postdoctoral Science Foundation Funded Project (Grant No. 2014M561826).
    [1]

    Bennett C H, Brassard G 1984 Theor. Comput. Sci. 560 175

    [2]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3

    [3]

    Muller A, Breguet J, Gisin N 1993 Europhys. Lett. 23 383

    [4]

    Boileau J C, Gottesman D, Laflamme R, Poulin D, Spekkens R W 2004 Phys. Rev. Lett. 92 017901

    [5]

    Gottesman D, Hoi-Kwong L, Lu kenhaus N, Preskill J 2002 Quant. Inf. Comput. 4 325

    [6]

    Watanabe S, Matsumoto R, Uyematsu T 2005 Int. J. Quantum. Inf. 4 935

    [7]

    Wang Y, Wang H D, Li Z H, Huang J X 2009 Computer Science and Information Technology Beijing, August 8-11, 2009 p438

    [8]

    Aizan N H K, Zukarnain Z A, Zainuddin H 2010 Network Applications Protocols and Services (NETAPPS) Kedah, September 22-23, 2010 p130

    [9]

    Winiarczyk P, Zabierowski W 2011 CAD Systems in Microelectronics (CADSM) Polyana-Svalyava, February 23-25, 2011 p23

    [10]

    Buhari A, Zukarnain Z A, Subramaniam S K, Zainuddin H, Saharudin S 2012 Industrial Electronics and Applications (ISIEA) Bandung, September 23-26, 2012 p84

    [11]

    Yang F, Hao Y J 2013 Wavelet Active Media Technology and Information Processing (ICCWAMTIP) Chengdu, December 17-19, 2013 p29

    [12]

    Rostom R, Bakhache B, Salami H, Awad A 2014 Mediterranean Electrotechnical Conference (MELECON) Beirut, April 13-16, 2014 p350

    [13]

    Halip N H M, Mokhtar M, Buhari A 2014 Photonics (ICP) Kuala Lumpur, September 2-4, 2014 p29

    [14]

    Lucamarini M, Dynes J F, Frohlich B, Zhiliang Y, Shields A J 2015 Select. Topics in Quantum Electron. 21 6601408

    [15]

    Archana B, Krithika S 2015 Electronics and Communication Systems (ICECS) Coimbatore, February 26-27, 2015 p457

    [16]

    Jasper R, Nicolas P, Ronald F 2015 Broadband Coverage in Germany 9th ITG Symposium Proceedings Berlin, Germany, April 20-21, 2015 p1

    [17]

    Zhao N, Pei C X, Liu D, Quan D X, Sun X N 2011 Acta Phys. Sin. 60 090307 (in Chinese) [赵楠, 裴昌幸, 刘丹, 权东晓, 孙晓楠 2011 物理学报 60 090307]

    [18]

    Chen M J, Liu X 2011 Chin. Phys. B 20 100305

    [19]

    Zhou F, Yong H L, Li D D, Yin J, Ren J G, Peng C Z 2014 Acta Phys. Sin. 63 140303 (in Chinese) [周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志 2014 物理学报 63 140303]

    [20]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [21]

    Zhao L Y, Li H W, Yin Z Q, Chen W, You J, Han Z F 2014 Chin. Phys. B 23 100304

    [22]

    Ren C B, Xu Q L, Ren G Z 2003 Comput. Eng. Appl. J. 13 177

    [23]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 277

    [24]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. 78 022321

    [25]

    Niu H C, Ren B C, Wang T J, Hua M, Deng F G 2012 Internal J. Theor. Phys. 51 2346

    [26]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) chaper 8

    [27]

    Zeng G H, Wang X M, Zhu H W 2000 J. China Inst. Commun. 21 70

  • [1]

    Bennett C H, Brassard G 1984 Theor. Comput. Sci. 560 175

    [2]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3

    [3]

    Muller A, Breguet J, Gisin N 1993 Europhys. Lett. 23 383

    [4]

    Boileau J C, Gottesman D, Laflamme R, Poulin D, Spekkens R W 2004 Phys. Rev. Lett. 92 017901

    [5]

    Gottesman D, Hoi-Kwong L, Lu kenhaus N, Preskill J 2002 Quant. Inf. Comput. 4 325

    [6]

    Watanabe S, Matsumoto R, Uyematsu T 2005 Int. J. Quantum. Inf. 4 935

    [7]

    Wang Y, Wang H D, Li Z H, Huang J X 2009 Computer Science and Information Technology Beijing, August 8-11, 2009 p438

    [8]

    Aizan N H K, Zukarnain Z A, Zainuddin H 2010 Network Applications Protocols and Services (NETAPPS) Kedah, September 22-23, 2010 p130

    [9]

    Winiarczyk P, Zabierowski W 2011 CAD Systems in Microelectronics (CADSM) Polyana-Svalyava, February 23-25, 2011 p23

    [10]

    Buhari A, Zukarnain Z A, Subramaniam S K, Zainuddin H, Saharudin S 2012 Industrial Electronics and Applications (ISIEA) Bandung, September 23-26, 2012 p84

    [11]

    Yang F, Hao Y J 2013 Wavelet Active Media Technology and Information Processing (ICCWAMTIP) Chengdu, December 17-19, 2013 p29

    [12]

    Rostom R, Bakhache B, Salami H, Awad A 2014 Mediterranean Electrotechnical Conference (MELECON) Beirut, April 13-16, 2014 p350

    [13]

    Halip N H M, Mokhtar M, Buhari A 2014 Photonics (ICP) Kuala Lumpur, September 2-4, 2014 p29

    [14]

    Lucamarini M, Dynes J F, Frohlich B, Zhiliang Y, Shields A J 2015 Select. Topics in Quantum Electron. 21 6601408

    [15]

    Archana B, Krithika S 2015 Electronics and Communication Systems (ICECS) Coimbatore, February 26-27, 2015 p457

    [16]

    Jasper R, Nicolas P, Ronald F 2015 Broadband Coverage in Germany 9th ITG Symposium Proceedings Berlin, Germany, April 20-21, 2015 p1

    [17]

    Zhao N, Pei C X, Liu D, Quan D X, Sun X N 2011 Acta Phys. Sin. 60 090307 (in Chinese) [赵楠, 裴昌幸, 刘丹, 权东晓, 孙晓楠 2011 物理学报 60 090307]

    [18]

    Chen M J, Liu X 2011 Chin. Phys. B 20 100305

    [19]

    Zhou F, Yong H L, Li D D, Yin J, Ren J G, Peng C Z 2014 Acta Phys. Sin. 63 140303 (in Chinese) [周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志 2014 物理学报 63 140303]

    [20]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [21]

    Zhao L Y, Li H W, Yin Z Q, Chen W, You J, Han Z F 2014 Chin. Phys. B 23 100304

    [22]

    Ren C B, Xu Q L, Ren G Z 2003 Comput. Eng. Appl. J. 13 177

    [23]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2007 Chin. Phys. 16 277

    [24]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. 78 022321

    [25]

    Niu H C, Ren B C, Wang T J, Hua M, Deng F G 2012 Internal J. Theor. Phys. 51 2346

    [26]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) chaper 8

    [27]

    Zeng G H, Wang X M, Zhu H W 2000 J. China Inst. Commun. 21 70

  • [1] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案. 物理学报, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [4] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [5] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [6] 龚黎华, 陈振泳, 徐良超, 周南润. 基于高维单粒子态的双向半量子安全直接通信协议. 物理学报, 2022, 71(13): 130304. doi: 10.7498/aps.71.20211702
    [7] 荣民希, 辛向军, 李发根. 具有强安全性的指定验证者量子签名方案. 物理学报, 2020, 69(19): 190302. doi: 10.7498/aps.69.20200244
    [8] 唐杰, 石磊, 魏家华, 于惠存, 薛阳, 武天雄. 基于d维GHZ态的多方量子密钥协商. 物理学报, 2020, 69(20): 200301. doi: 10.7498/aps.69.20200799
    [9] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [10] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [11] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [12] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [13] 陆鸢, 黄鹏, 朱俊, 代文超, 曾贵华. 基于αη协议的量子数据流加密系统实际安全与性能分析. 物理学报, 2012, 61(8): 080301. doi: 10.7498/aps.61.080301
    [14] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] 焦荣珍, 张文翰. 基于伪态协议的量子密钥分配系统研究. 物理学报, 2009, 58(4): 2189-2192. doi: 10.7498/aps.58.2189
    [16] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进. 物理学报, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [17] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] 王 开, 裴文江, 邹留华, 何振亚. 一种多混沌系统公钥密码算法的安全性分析. 物理学报, 2006, 55(12): 6243-6247. doi: 10.7498/aps.55.6243
    [19] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [20] 杨理, 吴令安, 刘颂豪. 复合量子密钥分发系统双速协议及其安全性分析. 物理学报, 2002, 51(11): 2446-2451. doi: 10.7498/aps.51.2446
计量
  • 文章访问数:  7159
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-21
  • 修回日期:  2015-10-20
  • 刊出日期:  2016-02-05

/

返回文章
返回