搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临界转动恒星Achernar的斜压结构与引力昏暗的精细研究

邰丽婷 宋汉峰 王江涛

引用本文:
Citation:

临界转动恒星Achernar的斜压结构与引力昏暗的精细研究

邰丽婷, 宋汉峰, 王江涛

Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar

Tai Li-Ting, Song Han-Feng, Wang Jiang-Tao
PDF
导出引用
  • 转动和潮汐效应是影响恒星结构和演化的非常重要的物理因素. 根据对Achernar的观测数据, 用扰动理论推导了临界转动恒星Achernar分别作为单星和双星的斜压结构的特征, 给出Achernar等压面上的密度等物理量的分布. 利用考虑转动和潮汐及形变效应的单、双星模型研究了Achernar的引力昏暗现象. 结果表明正剪切增强离心力、减小赤道的重力加速度和温度, 反剪切结果则与之相反. 反剪切和刚性转动情况并不符合对Achernar的引力昏暗观测结果. 发现转动双星模型比单星模型虽更符合Achernar赤道和极半径之比的观测值, 但理论计算的角速度比观测值小. 对比理论计算和观测结果发现, 当Achernar的自转角速度为4.65 10-5 s-1, 正剪切率/s为0.7851时, Achernar的极点温度为16041 K, 赤道温度为12073 K. 所有理论计算与观测值的相对误差不超过7%.
    Rotation and tide are two important factors that have very important impacts on the stellar structure and evolution. Based on the observational data of Achernar, we have derived the inclined pressure structure in a single rotating star or as a member in the binaries. We have given the distributions of the physical quantities on the isobaric surface and these distributions are derived from the Legendre series of expansions. We have also found the relationship between all levels of perturbation potential functions (including rotational and tidal distortions) and the distributions of density and pressure under the condition of inclined pressure structure. In particular, the gravitational darkening with the models including the effects of rotation and tide is investigated. We have found that the critical ratio of equatorial radius to the polar radius is consistent with the observations in rotating binaries better than that in single rotating model. The reason is that the tidal force can make the polar radius shortened because the tidal force exerts an inward force to the two polar points. However, the theoretical angular velocity in binaries is smaller than that observed. It is also shown that the positive shear enhances the centrifugal force and decreases the mean effective gravitational acceleration and effective temperatures whereas the negative shear plays a role to strengthen the effective gravitational acceleration. Moreover, the solid body rotation has not been supported inside Achernar because magnetic fields have not been detected through observations. Furthermore, the theoretical angular velocity in rigid rotation is higher than the angular velocity observed. Achernar has a periodic variation of light curves due to mass outburst, which also supports differential rotation. A positive shear indicates that the mass in accretion disks is falling to Achernar and the Achernar is spun up to critical rotation according to current observations. By comparing the theoretical results with observations, it can be seen that when the theoretical spin angular velocity of Achernar is 4.65 10-5 s-1 and the positive shears / s are 0.7851, the temperature of the polar points is 16041 K and that of equatorial sphere is 12073 K. Relative errors between the theoretical values and observations are less than 3% and are listed in the text. This model is the best and is the most possible one for Achernar.
      通信作者: 宋汉峰, sci.hfsong@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11463002)、中国科学院天体结构与演化重点实验室开放课题(批准号: OP201405)和贵州大学研究生创新基金(批准号: 研理工2015055)资助的课题.
      Corresponding author: Song Han-Feng, sci.hfsong@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11463002), the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant No. OP201405), and the Graduate Innovation Fund in Guizhou University, China (Grant No. 2015055).
    [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质. 物理学报, 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响. 物理学报, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [3] 彭卫国, 宋汉峰, 詹琼, 吴兴华, 景江红. 大质量转动沃尔夫-拉叶星的形成及内部核合成研究. 物理学报, 2019, 68(21): 219701. doi: 10.7498/aps.68.20191040
    [4] 李志, 宋汉峰, 彭卫国, 王靖洲, 詹琼. 转动双星同步和轨道圆化的物理过程研究. 物理学报, 2018, 67(19): 199701. doi: 10.7498/aps.67.20181056
    [5] 詹琼, 宋汉峰, 邰丽婷, 王江涛. 转动潮汐变形双星理论模型研究. 物理学报, 2015, 64(8): 089701. doi: 10.7498/aps.64.089701
    [6] 宋汉峰, 王靖洲, 李云. 辐射压对非同步转动双星系统洛希势函数的影响. 物理学报, 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [7] 付宏洋, 文德华, 燕晶. 考虑非牛顿引力下的快速转动混合星性质. 物理学报, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [8] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型. 物理学报, 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [9] 石筑一, 张春梅, 童 红, 赵行知, 倪绍勇. 102Ru核振动到转动演化的微观研究. 物理学报, 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [10] 余春日, 汪荣凯, 杨向东, 尹训昌. He-HI碰撞的转动激发分波截面. 物理学报, 2008, 57(5): 2906-2912. doi: 10.7498/aps.57.2906
    [11] 汪 华, 刘世林, 刘 杰, 王凤燕, 姜 波, 杨学明. N2O+离子A2Σ+电子态高振动能级的转动结构分析. 物理学报, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [12] 张国营, 张学龙, 程 勇, 薛刘萍, 韩 奎. Pr:YIG晶体抗磁性Faraday转动谱的研究. 物理学报, 2005, 54(1): 407-410. doi: 10.7498/aps.54.407
    [13] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量. 物理学报, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [14] 孟杰. 转动原子核的对关联变化. 物理学报, 1993, 42(3): 368-372. doi: 10.7498/aps.42.368
    [15] 陆庆正, 丁传凡, 高建谧, 孔繁敖. SiH4紫外多光子电离光谱的转动分析. 物理学报, 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [16] 张之翔. 晶体转动时非常光的轨迹. 物理学报, 1980, 29(11): 1483-1489. doi: 10.7498/aps.29.1483
    [17] 朱世昌. 广义相对论中自转球体的引力质量亏损和转动质量效应. 物理学报, 1979, 28(6): 894-900. doi: 10.7498/aps.28.894
    [18] 任庚未. 多核子系统波函数的转动群分类. 物理学报, 1974, 23(3): 13-25. doi: 10.7498/aps.23.13
    [19] 曾谨言, 张庆营, 杨立铭. 原子核的转动惯量和gR因子. 物理学报, 1959, 15(10): 565-574. doi: 10.7498/aps.15.565
    [20] 沈洪涛, 阮图南, 李扬国. F19的转动能谱. 物理学报, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
计量
  • 文章访问数:  6236
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-12-06
  • 刊出日期:  2016-02-05

/

返回文章
返回