搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转动双星同步和轨道圆化的物理过程研究

李志 宋汉峰 彭卫国 王靖洲 詹琼

引用本文:
Citation:

转动双星同步和轨道圆化的物理过程研究

李志, 宋汉峰, 彭卫国, 王靖洲, 詹琼

Physical process of tidal synchronization and orbital circularization in rotating binaries

Li Zhi, Song Han-Feng, Peng Wei-Guo, Wang Jing-Zhou, Zhan Qiong
PDF
导出引用
  • 潮汐效应是影响恒星结构和演化非常重要的物理因素.本文研究了影响潮汐同步和轨道圆化的物理因素,如恒星质量、初始转速、轨道周期、金属丰度、对流超射等,并根据转动恒星的角动量转移和元素扩散方程,给出了这些因素对转动双星演化和元素混合的影响.结果表明:具有大质量子星、初始转速慢、对流超射小、轨道周期短的双星系统,能更早地达到平衡速度和轨道圆化;初始转速快的恒星,由于潮汐同步过程减速,双星系统中氮元素增丰没有单星的氮元素增丰显著;大质量星、高金属丰度、超射大和短周期的双星系统,氮增丰相对显著;质量小、金属丰度低、转速慢、超射大的恒星具有较小的恒星半径,而低金属丰度恒星表面却具有较高的有效温度,快速转动单星向低温和低光度端演化.
    The tide is a very important physical factor which can significantly affect the structure and evolution of stars. The physical factors which can affect tidal synchronization and orbital circularization are explored in this paper. For stars with radiative envelopes, radiative damping mechanism is required to explain the observed synchronization and circularization of close binaries. A star can experience a range of oscillations that arise from, and are driven by, the tidal field:the dynamical tides. The dynamical tide is the dynamical response to the tidal force exerted by the companion; it takes into account the elastic properties of the star, and the possibilities of resonances with its free modes of oscillation. The dissipation mechanism acting on this kind of tide is the deviation from adiabaticity of the forced oscillation, due to the radiative damping. Several physical factors can have an influence on the process of radiative damping which is scaled with thermal timescale. These physical factors include stellar mass, initial velocity, orbital period, metallicity, overshooting, etc. According to the equations for angular momentum transfer and chemical elements diffusion, we can obtain how these physical factors affect the evolution of rotating binaries and the mixing of chemical elements in two rotating components. The results indicates that the binaries with massive stars, smaller initial spin velocities, smaller overshooting parameters, and shorter orbital periods can attain the equilibrium speed and orbital circularization early. At synchronous states, the tidal torque is zero and stellar winds continue to brake the star. Therefore, two components cannot keep the synchronous state for a long time. At the equilibrium state, the tidal torque is counteracted by wind torques. Therefore, the equilibrium speed is less than the synchronous one. The system with smaller initial spin velocities reaches the equilibrium speed and orbital circularization early because angular momentum transformation between spin and the orbit can shorten the orbital distance and increase the tidal torques. Nitrogen enrichment in binaries is weaker than the one in single stars due to tidal braking. The results reveal that the system with massive components, higher metallicities, larger overshooting parameters, and shorter orbital periods can display high nitrogen enrichment. Stellar radius is small in the star with lower mass, lower metallicities, slower spin speeds and larger overshooting parameters whereas the star with lower metallicities have higher surface effective temperature. Rapid rotating stars evolve towards low temperature and luminosity in the HR diagram.
      通信作者: 宋汉峰, hfsong@gzu.edu.cn;wjz0856@sina.com ; 王靖洲, hfsong@gzu.edu.cn;wjz0856@sina.com
    • 基金项目: 国家自然科学基金(批准号:11463002,11863003)、贵州省科学技术基金(黔科合J字LKK(2013)020号)和中国科学院天体结构与演化重点实验室开放课题(批准号:OP201405)资助的课题.
      Corresponding author: Song Han-Feng, hfsong@gzu.edu.cn;wjz0856@sina.com ; Wang Jing-Zhou, hfsong@gzu.edu.cn;wjz0856@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11463002, 11863003), the Science and Technology Foundation of Guizhou Province, China (Grant No. LKK(2013)020), and the Open Foundation of the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant No. OP201405).
    [1]

    Huang R Q 2006 Stellar Physics (2nd Ed.) (Beijing:Science and Technology of China Press) pp378-384 (in Chinese) [黄润乾 2006 恒星物理 (第二版) (北京:中国科学技术出版社) 第378384页]

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1969 Mitt. A. G. 27 168

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarque P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarque P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarque P 1991 Astrophys. J. 367 239

    [8]

    Huang R Q 2004 Astron. Astrophys. 422 981

    [9]

    Huang R Q 2004 Astron. Astrophys. 425 591

    [10]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [11]

    Song H F, Wang J Z, Song F, Song F, Wang J T 2017 Astron. Astrophys. 600 A42

    [12]

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [13]

    Tai L T, Song H F, Wang J T 2016 Acta Phys. Sin. 65 049701 (in Chinese) [邰丽婷, 宋汉峰, 王江涛 2016 物理学报 65 049701]

    [14]

    Zahn J P 1975 Astron. Astrophys. 41 329

    [15]

    Zahn J P 1977 Astron. Astrophys. 57 383

    [16]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrom S, Granada A 2013 Astron. Astrophys. 556 A100

    [17]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P 2016 Astron. Astrophys. 585 A120

    [18]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P, Georgy C, Qin Y, Fragos T, Soerensen M, Barblan F, Wade G A 2018 Astron. Astrophys. 609 A3

    [19]

    Wang J T, Song H F 2016 Chin. Phys. Lett. 33 099702

    [20]

    Li Z, Song H F, Peng W G 2018 Chin. Phys. Lett. 35 079701

    [21]

    Toledano O, Moreno E, Koenigsberger G, Detmers R, Langer N 2007 Astron. Astrophys. 461 1057

    [22]

    Zahn J P 1989 Astron. Astrophys. 220 112

    [23]

    Endal A S, Sofia S 1978 Astrophys. J. 220 279

    [24]

    Kippenhahn R 1974 Late Stages of Stellar Evolution (Warsaw:D Reidel Publishing Co) p20

    [25]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368

    [26]

    Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F 2011 Astrophys. J. Suppl. 192 3P

    [27]

    Paxton B, Cantiello M, Arras P, Bildsten L, Brown E F, Dotter A, Mankovich C, Montgomery M H, Stello D, Timmes F X, Townsend R 2013 Astrophys. J. Suppl. 208 4P

    [28]

    Paxton B, Marchant P, Schwab J, Bauer E B, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend R H D, Townsley D M, Timmes F X 2015 Astrophys. J. Suppl. 220 15P

    [29]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [30]

    Maeder A, Meynet G 2012 Rev. Mod. Phys. 84 25

    [31]

    von Zeipel H 1924 Mon. Not. R. Astron. Soc. 84 665

  • [1]

    Huang R Q 2006 Stellar Physics (2nd Ed.) (Beijing:Science and Technology of China Press) pp378-384 (in Chinese) [黄润乾 2006 恒星物理 (第二版) (北京:中国科学技术出版社) 第378384页]

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1969 Mitt. A. G. 27 168

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarque P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarque P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarque P 1991 Astrophys. J. 367 239

    [8]

    Huang R Q 2004 Astron. Astrophys. 422 981

    [9]

    Huang R Q 2004 Astron. Astrophys. 425 591

    [10]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [11]

    Song H F, Wang J Z, Song F, Song F, Wang J T 2017 Astron. Astrophys. 600 A42

    [12]

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [13]

    Tai L T, Song H F, Wang J T 2016 Acta Phys. Sin. 65 049701 (in Chinese) [邰丽婷, 宋汉峰, 王江涛 2016 物理学报 65 049701]

    [14]

    Zahn J P 1975 Astron. Astrophys. 41 329

    [15]

    Zahn J P 1977 Astron. Astrophys. 57 383

    [16]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrom S, Granada A 2013 Astron. Astrophys. 556 A100

    [17]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P 2016 Astron. Astrophys. 585 A120

    [18]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P, Georgy C, Qin Y, Fragos T, Soerensen M, Barblan F, Wade G A 2018 Astron. Astrophys. 609 A3

    [19]

    Wang J T, Song H F 2016 Chin. Phys. Lett. 33 099702

    [20]

    Li Z, Song H F, Peng W G 2018 Chin. Phys. Lett. 35 079701

    [21]

    Toledano O, Moreno E, Koenigsberger G, Detmers R, Langer N 2007 Astron. Astrophys. 461 1057

    [22]

    Zahn J P 1989 Astron. Astrophys. 220 112

    [23]

    Endal A S, Sofia S 1978 Astrophys. J. 220 279

    [24]

    Kippenhahn R 1974 Late Stages of Stellar Evolution (Warsaw:D Reidel Publishing Co) p20

    [25]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368

    [26]

    Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F 2011 Astrophys. J. Suppl. 192 3P

    [27]

    Paxton B, Cantiello M, Arras P, Bildsten L, Brown E F, Dotter A, Mankovich C, Montgomery M H, Stello D, Timmes F X, Townsend R 2013 Astrophys. J. Suppl. 208 4P

    [28]

    Paxton B, Marchant P, Schwab J, Bauer E B, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend R H D, Townsley D M, Timmes F X 2015 Astrophys. J. Suppl. 220 15P

    [29]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [30]

    Maeder A, Meynet G 2012 Rev. Mod. Phys. 84 25

    [31]

    von Zeipel H 1924 Mon. Not. R. Astron. Soc. 84 665

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质. 物理学报, 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] 梁华志, 张靖仪. 临界中性Gauss-Bonnet-anti-de Sitter黑洞复杂度演化. 物理学报, 2021, 70(3): 030401. doi: 10.7498/aps.70.20201286
    [3] 彭卫国, 宋汉峰, 詹琼, 吴兴华, 景江红. 大质量转动沃尔夫-拉叶星的形成及内部核合成研究. 物理学报, 2019, 68(21): 219701. doi: 10.7498/aps.68.20191040
    [4] 邰丽婷, 宋汉峰, 王江涛. 临界转动恒星Achernar的斜压结构与引力昏暗的精细研究. 物理学报, 2016, 65(4): 049701. doi: 10.7498/aps.65.049701
    [5] 詹琼, 宋汉峰, 邰丽婷, 王江涛. 转动潮汐变形双星理论模型研究. 物理学报, 2015, 64(8): 089701. doi: 10.7498/aps.64.089701
    [6] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究. 物理学报, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [7] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究. 物理学报, 2013, 62(10): 104702. doi: 10.7498/aps.62.104702
    [8] 宋汉峰, 王靖洲, 李云. 辐射压对非同步转动双星系统洛希势函数的影响. 物理学报, 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [9] 曹晓霞, 马松华, 任清褒, 杨征. (2+1)维破裂孤子方程的多 Solitoff 解及其演化. 物理学报, 2012, 61(14): 140505. doi: 10.7498/aps.61.140505
    [10] 蒋黎红, 马松华, 方建平, 吴红玉. (3+1)维Burgers系统的新孤子解及其演化. 物理学报, 2012, 61(2): 020510. doi: 10.7498/aps.61.020510
    [11] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化. 物理学报, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [12] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化. 物理学报, 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [13] 石筑一, 张春梅, 童 红, 赵行知, 倪绍勇. 102Ru核振动到转动演化的微观研究. 物理学报, 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [14] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [15] 张国营, 张学龙, 程 勇, 薛刘萍, 韩 奎. Pr:YIG晶体抗磁性Faraday转动谱的研究. 物理学报, 2005, 54(1): 407-410. doi: 10.7498/aps.54.407
    [16] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量. 物理学报, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [17] 李林森. 引力辐射阻尼对双星轨道要素变化的影响——对过近星点时刻的影响. 物理学报, 1994, 43(5): 694-698. doi: 10.7498/aps.43.694
    [18] 孟杰. 转动原子核的对关联变化. 物理学报, 1993, 42(3): 368-372. doi: 10.7498/aps.42.368
    [19] 张之翔. 晶体转动时非常光的轨迹. 物理学报, 1980, 29(11): 1483-1489. doi: 10.7498/aps.29.1483
    [20] 沈洪涛, 阮图南, 李扬国. F19的转动能谱. 物理学报, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
计量
  • 文章访问数:  6647
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-07-06
  • 刊出日期:  2018-10-05

/

返回文章
返回