-
将经典金属自由电子气模型应用于金属型碳纳米管, 基于光学天线有效波长理论, 得出了金属型碳纳米管光学天线响应的有效波长与碳纳米管介电特性之间的普适关系. 在对碳纳米管介电特性进行第一性原理计算的基础上, 以金属型4 碳纳米管为例, 进一步研究了金属型碳纳米管光学天线响应的有效波长与入射波长之间的关系, 以及金属型碳纳米管光学偶极子天线的谐振特性. 通过将已有传统金属光学天线和碳纳米管天线有效波长的研究结果进行对比, 验证了本文理论的正确性. 结果表明, 碳纳米管光学天线响应的有效波长与入射波长呈近似线性关系, 与传统金属材料构成的同直径光学天线相比, 碳纳米管天线显示出了更强的波长压缩能力, 并且在可见光到红外波段内易于发生谐振. 该研究方法可为碳纳米管光学天线研究提供新的思路.The effective wavelength scaling theory for optical antennas indicates that an optical antenna does not respond to the wavelength of incident electromagnetic wave, but to a shorter effective wavelength which depends on the plasma wavelength and optical dielectric permittivity of the antenna material, and also on the geometric structure of the antenna. In this paper, based on the effective wavelength scaling theory for optical antennas and on the assumption that metallic carbon nanotube (CNT) can be described by a free electron gas according to the Drude model, the general relationship between effective wavelength and dielectric properties of the antenna material for a metallic carbon nanotube optical antenna is derived. According to this relationship, the investigation into the effective wavelength that a metallic CNT optical antenna responds to can be transferred to easier theoretical calculation for the dielectric properties of CNT, instead of exploring its plasma wavelength. Following first-principle calculations for dielectric properties of CNT with 4 diameter, the effective wavelength versus incident wavelength for each of two types of metallic 4 CNT antennas is investigated. In addition, the resonance characteristics of metallic 4 CNT dipole antennas are analyzed. It is shown that the effective wavelength approximately follows a linear relationship with wavelength of the incident light for the 4 metallic CNT antenna, which is consistent with the wavelength scaling theory. In addition, CNT optical antenna has good wavelength scaling performance compared with nano-antennas made of conventional metals like silver and gold; hence metallic CNTs as optical antennas are beneficial for constructing more compact devices. Moreover, according to the simulation results of resonance characteristics of metallic 4 CNT dipole antennas, there are several 4 metallic CNT dipole antennas with small difference in length meeting the resonance conditions for incident electromagnetic wave with a certain frequency, while there are one or more corresponding resonant modes in the optical and near-infrared spectral range concerned for a 4 metallic CNT dipole antenna with fixed length. Therefore, it is easier to meet the resonance conditions for CNT optical antenna than for conventional metal optical antenna, which also arises from the superior wavelength scaling ability of CNT. These advantages of CNT can help to miniaturize the optical antenna and improve the efficiency of energy conversion of the incident radiation in the optical and near-infrared spectral range. Reliability of the assumption and the theoretical process in this paper are validated by comparing the simulation results with existing investigations. Therefore, the theoretical investigations in this paper may provide a new approach to studying metallic CNT optical antennas. The simulation results also demonstrate the potential applications of CNT optical antenna, including solar energy harvesting and conversion.
-
Keywords:
- carbon nanotubes /
- optical antenna /
- dielectric properties /
- effective wavelength
[1] Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438
[2] Novotny L, van Hulst N 2011 Nature Photon. 5 83
[3] Wessel J 1985 J. Opt. Soc. Am. B 2 1538
[4] Pohl D W 2000 Near-Field Optics Seen as an Antenna Problem in Near-Field Optics: Principles and Applications (Singapore: World Scientific) pp9-21
[5] Hecht B, Mhlschlegel P, Farahani J N, Eisler H, Pohl D W, Martin O J F, Biagioni P 2006 Chimia Int. J. Chem. 60 A765
[6] Briones E, Briones J, Cuadrado A, Briones E, Briones J, Cuadrado A, Martinez-Anton J C, McMurtry S, Hehn M, Montaigne F, Alda J, Gonzalez F J 2014 Appl. Phys. Lett. 105 093108
[7] Catchpole K R, Polman A 2008 Opt. Express 16 21793
[8] Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355
[9] Yuan Y Y, Yuan Z H, Li X N, Wu J, Zhan W T, Ye S 2015 Chin. Phys. B 24 262
[10] Xiong Z C, Zhu L L, Liu C, Gao S M, Zhu J Q 2015 Acta Phys. Sin. 64 247301 (in Chinese) [熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强 2015 物理学报 64 247301]
[11] Geoffrey V M, Ji-Ho P, Amit A, Nanda K B, Das S K, Sailor M J, Bhatia S N 2009 Cancer Res. 69 3892
[12] Iijima S 1991 Nature 354 56
[13] Lan Y C, Wang Y, Ren Z F 2011 Adv. Phys. 60 553
[14] Liu H J, Wen Y W, Miao L, Hu Y 2007 Nanotechnology 18 445708
[15] Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F 2004 Appl. Phys. Lett. 85 2607
[16] Ajayan P M, Stephan O, Colliex C, Trauth D 1994 Science 265 1212
[17] Jin H, Hanson G W 2006 IEEE Trans. Nanotechnol. 5 766
[18] Wang Y, Wu Q, Shi W, He X J, Yin J H 2009 Acta Phys. Sin. 58 919 (in Chinese) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 物理学报 58 919]
[19] Shuba M V, Slepyan G Y, Maksimenko S A, Thomsen C, Lakhtakia A 2009 Phys. Rev. B 79 155403
[20] Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801
[21] Huang Y, Yin W Y, Liu Q H 2008 IEEE Trans. Nanotechnol. 7 331
[22] Kempa K, Rybczynski J, Huang Z, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren Z F 2007 Adv. Mater. 19 421
[23] Wang Y, Wu Q, He X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801
[24] Wang Y, Wu Q, Wu Y M, Fu J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chinese) [王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟 2011 物理学报 60 057801]
[25] Hanson G W 2005 IEEE Trans. Antennas Propagat. 53 3426
[26] Mhlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607
[27] Novotny L 2007 Phys. Rev. Lett. 98 266802
[28] Sawada S I, Hamada N 1992 Solid State Commun. 83 917
[29] Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249
[30] Wang N, Tang Z K, Li G D, Chen J S 2000 Nature 408 50
[31] Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y, Iijima S 2000 Nature 408 50
[32] Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416
[33] Liu H J, Chan C T 2002 Phys. Rev. B 66 115416
[34] Qin W, Zhang Z H, Liu X H 2011 Acta Phys. Sin. 60 037302 (in Chinese) [秦威, 张振华, 刘新海 2011 物理学报 60 037302]
[35] Ahuja R, Auluck S, Wills J M, Alouani M, Johansson B, Eriksson O 1997 Phys. Rev. B 55 4999
[36] Li J, Duan C G, Gu Z Q, Wang D S 1998 Phys. Rev. B 57 2222
[37] Baroni S, de Grironcol S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515
[38] Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F, Quidant R 2008 Phys. Rev. Lett. 101 116805
[39] Lin M F, Shung K W K 1994 Phys. Rev. B 50 17744
[40] Tasaki S, Maekawa K, Yamabe T 1998 Phys. Rev. B 57 9301
[41] Gai H, Wang J, Tian Q 2007 Appl. Opt. 46 2229
[42] Hanson G W 2005 Proceedings of the Antennas and Propagation Society International Symposium, 2005 IEEE July 3-8, 2005 p247
[43] Burke P J, Li S, Yu Z 2006 IEEE Trans. Nanotechnol. 5 314
[44] Wu Q, Wang Y, Wu Y M, Zhang S Q, Li L W, Zhuang L L 2010 IET Microwaves Antennas Propag. 4 1500
[45] Hanson G W 2008 IEEE Antennas Propag. Mag. 50 66
[46] Sharma A, Singh V, Bougher T L, Cola B A 2015 Nature Nanotech. 10 1027
-
[1] Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438
[2] Novotny L, van Hulst N 2011 Nature Photon. 5 83
[3] Wessel J 1985 J. Opt. Soc. Am. B 2 1538
[4] Pohl D W 2000 Near-Field Optics Seen as an Antenna Problem in Near-Field Optics: Principles and Applications (Singapore: World Scientific) pp9-21
[5] Hecht B, Mhlschlegel P, Farahani J N, Eisler H, Pohl D W, Martin O J F, Biagioni P 2006 Chimia Int. J. Chem. 60 A765
[6] Briones E, Briones J, Cuadrado A, Briones E, Briones J, Cuadrado A, Martinez-Anton J C, McMurtry S, Hehn M, Montaigne F, Alda J, Gonzalez F J 2014 Appl. Phys. Lett. 105 093108
[7] Catchpole K R, Polman A 2008 Opt. Express 16 21793
[8] Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355
[9] Yuan Y Y, Yuan Z H, Li X N, Wu J, Zhan W T, Ye S 2015 Chin. Phys. B 24 262
[10] Xiong Z C, Zhu L L, Liu C, Gao S M, Zhu J Q 2015 Acta Phys. Sin. 64 247301 (in Chinese) [熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强 2015 物理学报 64 247301]
[11] Geoffrey V M, Ji-Ho P, Amit A, Nanda K B, Das S K, Sailor M J, Bhatia S N 2009 Cancer Res. 69 3892
[12] Iijima S 1991 Nature 354 56
[13] Lan Y C, Wang Y, Ren Z F 2011 Adv. Phys. 60 553
[14] Liu H J, Wen Y W, Miao L, Hu Y 2007 Nanotechnology 18 445708
[15] Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F 2004 Appl. Phys. Lett. 85 2607
[16] Ajayan P M, Stephan O, Colliex C, Trauth D 1994 Science 265 1212
[17] Jin H, Hanson G W 2006 IEEE Trans. Nanotechnol. 5 766
[18] Wang Y, Wu Q, Shi W, He X J, Yin J H 2009 Acta Phys. Sin. 58 919 (in Chinese) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 物理学报 58 919]
[19] Shuba M V, Slepyan G Y, Maksimenko S A, Thomsen C, Lakhtakia A 2009 Phys. Rev. B 79 155403
[20] Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801
[21] Huang Y, Yin W Y, Liu Q H 2008 IEEE Trans. Nanotechnol. 7 331
[22] Kempa K, Rybczynski J, Huang Z, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren Z F 2007 Adv. Mater. 19 421
[23] Wang Y, Wu Q, He X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801
[24] Wang Y, Wu Q, Wu Y M, Fu J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chinese) [王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟 2011 物理学报 60 057801]
[25] Hanson G W 2005 IEEE Trans. Antennas Propagat. 53 3426
[26] Mhlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607
[27] Novotny L 2007 Phys. Rev. Lett. 98 266802
[28] Sawada S I, Hamada N 1992 Solid State Commun. 83 917
[29] Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249
[30] Wang N, Tang Z K, Li G D, Chen J S 2000 Nature 408 50
[31] Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y, Iijima S 2000 Nature 408 50
[32] Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416
[33] Liu H J, Chan C T 2002 Phys. Rev. B 66 115416
[34] Qin W, Zhang Z H, Liu X H 2011 Acta Phys. Sin. 60 037302 (in Chinese) [秦威, 张振华, 刘新海 2011 物理学报 60 037302]
[35] Ahuja R, Auluck S, Wills J M, Alouani M, Johansson B, Eriksson O 1997 Phys. Rev. B 55 4999
[36] Li J, Duan C G, Gu Z Q, Wang D S 1998 Phys. Rev. B 57 2222
[37] Baroni S, de Grironcol S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515
[38] Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F, Quidant R 2008 Phys. Rev. Lett. 101 116805
[39] Lin M F, Shung K W K 1994 Phys. Rev. B 50 17744
[40] Tasaki S, Maekawa K, Yamabe T 1998 Phys. Rev. B 57 9301
[41] Gai H, Wang J, Tian Q 2007 Appl. Opt. 46 2229
[42] Hanson G W 2005 Proceedings of the Antennas and Propagation Society International Symposium, 2005 IEEE July 3-8, 2005 p247
[43] Burke P J, Li S, Yu Z 2006 IEEE Trans. Nanotechnol. 5 314
[44] Wu Q, Wang Y, Wu Y M, Zhang S Q, Li L W, Zhuang L L 2010 IET Microwaves Antennas Propag. 4 1500
[45] Hanson G W 2008 IEEE Antennas Propag. Mag. 50 66
[46] Sharma A, Singh V, Bougher T L, Cola B A 2015 Nature Nanotech. 10 1027
计量
- 文章访问数: 6795
- PDF下载量: 193
- 被引次数: 0