搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温光滑壁面上水滴撞击结冰行为

胡海豹 何强 余思潇 张招柱 宋东

引用本文:
Citation:

低温光滑壁面上水滴撞击结冰行为

胡海豹, 何强, 余思潇, 张招柱, 宋东

Freezing behavior of droplet impacting on cold surfaces

Hu Hai-Bao, He Qiang, Yu Si-Xiao, Zhang Zhao-Zhu, Song Dong
PDF
导出引用
  • 采用高速摄像技术测试低温光滑壁面上水滴撞击结冰过程, 分析了撞击速度、壁面温度和材料热导率对水滴撞击铺展、振荡及结冰行为的影响规律. 结果表明, 低温壁面造成水滴最大铺展直径缩小, 且结冰时间随温度降低而缩短; 当撞击We数提高时, 水滴最大铺展直径增大, 而振荡和结冰时间减小; 同时材料热导率越高, 最大铺展直径越小, 结冰越迅速. 另外, 从热力学角度推导出水滴撞击结冰时间的理论公式, 预测误差5.3%.
    Exploring the freezing process and its potential mechanism of the droplets impacting on a solid surface is desperately desired, owing to its anti-icing applications in aircraft, cable, radar, etc. On the controllable low temperature test equipment, the freezing dynamic behaviors of droplets impacting on three cold plates, made of copper, aluminum and silicon, are recorded by a high-speed camera in this paper, and characterized by the droplet spreading diameter, oscillation and freezing time. Here, the freezing behavior of droplets is predicated by observing the color change of the droplet. Through the experimental exploration and theoretical analysis, we reveal the effects of the impacting speed, surface temperature and thermal conductivity of material on the freezing dynamics of the droplet. We demonstrate that a cold surface shrinks the maximum spreading diameter of droplet compared with the surface at ambient temperature; the lower the surface temperature, the shorter the freezing time would be and the smaller the maximum spreading diameter would be; the maximum spreading diameter increases with increasing Weber number, whereas the oscillation and freezing time decrease. Meanwhile, the higher the material thermal conductivity, the shorter the freezing time would be, and the bigger the rising slope of the maximum spreading diameter with increasing Weber number will be. A function to predict the freezing time is derived from thermodynamic condition. The calculated values are in good agreement with the experimental data, with the maximum relative error of less than 5.3%.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn ; 宋东, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:51335010)、中央高校基本科研业务费(批准号:3102015ZY017)和西北工业大学研究生创意创新种子基金(批准号:Z2015002)资助的课题.
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn ; Song Dong, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335010), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102015ZY017), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2015002).
    [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈盛强, 陈觉先, 李熠桥 2012 物理学报 61 184702]

    [3]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [4]

    Okoroafor E U, Newborough M 2000 Appl. Therm. Eng. 20 737

    [5]

    Laforte J L, Allaire M A, Laflamme J 1998 Atmos. Res. 46 143

    [6]

    Hochart C, Fortin G, Perron J 2008 Wind Energy J. 11 319

    [7]

    Zou M, Beckford S, Wei R 2011 Appl. Surf. Sci. 257 3786

    [8]

    Zhou L, Xu H J, Long S K 2010 China Safety Science Journal 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科 2010 中国安全科学学报 20 105]

    [9]

    Hu H, Jin Z Y 2010 Int. J. Multiphas. Flow 36 672

    [10]

    Wang J T, Liu Z L, Gou Y J 2006 Sci. China Ser. E 49 590

    [11]

    Hoke J L 2000 Ph. D. Dissertation (USA Illinois: University of Illinois)

    [12]

    Huang L Y, Liu Z L, Liu Y M 2010 J. Eng. Thermophys.-Rus 31 647 (in Chinese) [黄玲艳, 刘中良, 刘耀民 2010 工程热物理学报 31 647]

    [13]

    Zhu W Y 2007 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [朱卫英 2007 硕士学位论文(大连: 大连理工大学)]

    [14]

    Antonini C, Innocenti M, Horn T 2011 Cold Reg. Sci. Technol. 67 58

    [15]

    Kulinich S A, Farhadi S, Nose K 2011 Langmuir 27 25

    [16]

    Varanasi K K, Deng T, Smith J D 2010 Appl. Phys. Lett. 97 234102

    [17]

    Tao W Q 2006 Heat Transfer (Xian: Northwestern Polytechnical University Press) (in Chinese) [陶文铨 2006 传热学(西安: 西北工业大学出版社)]

  • [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈盛强, 陈觉先, 李熠桥 2012 物理学报 61 184702]

    [3]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [4]

    Okoroafor E U, Newborough M 2000 Appl. Therm. Eng. 20 737

    [5]

    Laforte J L, Allaire M A, Laflamme J 1998 Atmos. Res. 46 143

    [6]

    Hochart C, Fortin G, Perron J 2008 Wind Energy J. 11 319

    [7]

    Zou M, Beckford S, Wei R 2011 Appl. Surf. Sci. 257 3786

    [8]

    Zhou L, Xu H J, Long S K 2010 China Safety Science Journal 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科 2010 中国安全科学学报 20 105]

    [9]

    Hu H, Jin Z Y 2010 Int. J. Multiphas. Flow 36 672

    [10]

    Wang J T, Liu Z L, Gou Y J 2006 Sci. China Ser. E 49 590

    [11]

    Hoke J L 2000 Ph. D. Dissertation (USA Illinois: University of Illinois)

    [12]

    Huang L Y, Liu Z L, Liu Y M 2010 J. Eng. Thermophys.-Rus 31 647 (in Chinese) [黄玲艳, 刘中良, 刘耀民 2010 工程热物理学报 31 647]

    [13]

    Zhu W Y 2007 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [朱卫英 2007 硕士学位论文(大连: 大连理工大学)]

    [14]

    Antonini C, Innocenti M, Horn T 2011 Cold Reg. Sci. Technol. 67 58

    [15]

    Kulinich S A, Farhadi S, Nose K 2011 Langmuir 27 25

    [16]

    Varanasi K K, Deng T, Smith J D 2010 Appl. Phys. Lett. 97 234102

    [17]

    Tao W Q 2006 Heat Transfer (Xian: Northwestern Polytechnical University Press) (in Chinese) [陶文铨 2006 传热学(西安: 西北工业大学出版社)]

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [3] 刘联胜, 刘轩臣, 贾文琪, 田亮, 杨华, 段润泽. 小液滴撞击壁面传热特性数值分析. 物理学报, 2021, 70(7): 074402. doi: 10.7498/aps.70.20201354
    [4] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [7] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析. 物理学报, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [8] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] 裴传康, 魏炳乾, 左娟莉, 杨泓. 椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理. 物理学报, 2019, 68(20): 204703. doi: 10.7498/aps.68.20190541
    [10] 裴传康, 魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究. 物理学报, 2018, 67(22): 224703. doi: 10.7498/aps.67.20181422
    [11] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [12] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学. 物理学报, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [13] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究. 物理学报, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [14] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析. 物理学报, 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [15] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [16] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [17] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析. 物理学报, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [18] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [19] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [20] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
计量
  • 文章访问数:  7278
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 修回日期:  2016-02-02
  • 刊出日期:  2016-05-05

/

返回文章
返回