搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理

裴传康 魏炳乾 左娟莉 杨泓

引用本文:
Citation:

椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理

裴传康, 魏炳乾, 左娟莉, 杨泓

Numerical investigation of large bubble entrapment mechanism for micron droplet impact on deep pool

Pei Chuan-Kang, Wei Bing-Qian, Zuo Juan-Li, Yang Hong
PDF
HTML
导出引用
  • 在微小水滴撞击深水液池运动中, 水滴在下降过程中产生的外形振荡对后续空腔产生及气泡夹带有极大影响. 因此, 本文假定5种不同宽高比(AR)的微小变形水滴, 采用自适应网格技术和体积函数方法对其运动过程进行数值模拟, 并详细探究不同撞击速度和水滴形变对撞击后空腔变形坍缩过程、涡环的发展以及气泡夹带的影响. 研究结果表明, 在较高撞击速度下(Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s), AR = 1.33下的长椭圆形变水滴与液池聚合并产生大型气泡夹带. 大型气泡截留过程主要由水滴撞击时颈部自由面下产生的涡环控制, 涡环裹挟自由界面形成滚动射流, 最终射流接触夹带大型气泡. 在气泡截留后期, 腔内气旋推动侧壁向外拓展, 有效增大了气泡体积. 在撞击初期阶段, 液滴形状越扁, 水滴与液池颈部射流曲率越大, 生成涡环强度越大. 但扁椭圆水滴生成涡环距离自由面过近, 界面的早期拉动破坏了涡环强度, 因此涡环衰减也相对较快.
    Water droplet impacting into a deep liquid pool is one of the most well-known flow phenomena in fluid mechanics. As a ubiquitous natural aeration process, the coalescence of water droplets in lakes and ponds and the subsequent bubble entrapment are one of the most notable ways of gas-liquid exchange in nature, and it is of great significance for underwater sound transmission, aquatic ecosystems and chemical process. The shape of an oscillating droplet in impact under different surrounding medium and initial condition is a key factor for the subsequent cavity formation and bubble entrapment. In this study, the adaptive mesh refinement technique and volume of fluid (VOF) method are applied to the study of the water droplet impact phenomena. Five kinds of deformed micron water droplets with different aspect ratios and impact velocities of 4 m/s and 6 m/s are selected to investigate the influences of drop deformation and impact velocity on the bubble entrapment, capillary wave propagation, and vortex ring evolution. The results show that at low impact velocities (Fr = 75, We = 64.4, Re = 1160, Vi = 4 m/s), the shape of water droplet does not cause the cavity formation and bubble entrapment to change significantly. However, under higher impact velocity (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s), deformed droplet with an aspect ratio of 1.33 coalesces with the pool, and large bubble entrainment occurs. The large bubble entrapment is affected mainly by the vortex ring generated under the free surface at the neck between the droplet and the pool. The vortex ring penetrates more deeply before it pulls the free surface to generate a rolling jet at the upper interface of the cavity. The rolling jets then contact the center of the cavity and collapse to entrain a large bubble. At the end of the bubble entrapment phenomenon, the cyclone inside the cavity pushes the sidewall of the cavity continuously, and effectively increases the lateral volume of the bubble, which plays a vital role in the bubble entrainment process. In the initial stage of the impact, the flatter the shape of the droplet, the greater the curvature of the jet generated on the neck between the droplet and the pool, the greater the strength of the vortex ring generated under the free surface. However, the vortex ring formed by the oblate-shaped water droplet is generated too close to the free surface, and the early free surface pulling reduces the strength of the vortex ring, thus the vorticity maximum value decays relatively fast.
      通信作者: 魏炳乾, weibingqian@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605136)资助的课题
      Corresponding author: Wei Bing-Qian, weibingqian@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605136)
    [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [2]

    Prosperetti A, Oğuz H N 1993 Annu. Rev. Fluid Mech. 25 577Google Scholar

    [3]

    Jayaratne O W, Mason B J 1964 Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 280 545Google Scholar

    [4]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601Google Scholar

    [5]

    董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶 2018 物理学报 67 054702Google Scholar

    Dong Q Q, Hu H B, Chen S Q, He Q, Bao L Y 2018 Acta Phys. Sin. 67 054702Google Scholar

    [6]

    黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702Google Scholar

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702Google Scholar

    [7]

    Wang A B, Kuan C C, Tsai P H 2013 Phys. Fluids 25 101702Google Scholar

    [8]

    Blanchette F, Bigioni T P 2009 J. Fluid Mech. 620 333Google Scholar

    [9]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129–132

    [10]

    Thoroddsen S T, Takehara K, Nguyen H D, Etoh T G 2018 J. Fluid Mech. 848 R3Google Scholar

    [11]

    Deka H, Ray B, Biswas G, Dalal A, Tsai P H, Wang A B 2017 Phys. Fluids 29 09210

    [12]

    Bouwhuis W, Hendrix M H, van der Meer D, Snoeijer J H 2015 J. Fluid Mech. 771 503Google Scholar

    [13]

    Pumphrey H C, Elmore P A 1990 J. Fluid Mech. 220 539Google Scholar

    [14]

    Oğuz H N, Prosperetti A 1990 J. Fluid Mech. 219 143Google Scholar

    [15]

    Oğuz H N, Prosperetti A 1989 J. Fluid Mech. 203 149Google Scholar

    [16]

    Oğuz H N, Prosperetti A 1991 J. Fluid Mech. 228 417

    [17]

    Prosperetti A 1988 J. Acoust. Soc. Am. 84 1042Google Scholar

    [18]

    Deng Q, Anilkumar A V, Wang T G 2007 J. Fluid Mech. 578 119Google Scholar

    [19]

    Chen S, Guo L 2014 Chem. Eng. Sci. 109 1Google Scholar

    [20]

    Volkov R S, Kuznetsov G V, Strizhak P A 2015 Int. J. Heat Mass Transf. 85 1Google Scholar

    [21]

    Strizhak P A 2013 J. Eng. Phys. Thermophys. 86 895Google Scholar

    [22]

    Thokchom A K, Gupta A, Jaijus P J, Singh A 2014 Int. J. Heat Mass Transf. 68 67Google Scholar

    [23]

    Varaksin A Y 2013 High Temp. 51 377Google Scholar

    [24]

    Volkov R S, Vysokomornaya O V, Kuznestov G V, Strizhak P A 2013 J. Eng. Phys. Thermophys. 86 1413Google Scholar

    [25]

    Wang C Y, Zhang C B, Huang X Y, Liu X D, Chen Y P 2016 Chin. Phys. B 25 108202Google Scholar

    [26]

    丁思源, 王瑞祥, 徐荣吉, 张一灏, 蔡骥驰 2016 化工学报 67 2495

    Ding C Y, Wang R X, Xu R J, Zhang Y H, Cai J C 2016 CIESC Journal 67 2495

    [27]

    Roman B, Bico J 2010 J. Phys.Condes. Matter 22 493101Google Scholar

    [28]

    裴传康, 魏炳乾 2018 物理学报 67 224703Google Scholar

    Pei C K, Wei B Q 2018 Acta Phys. Sin. 67 224703Google Scholar

    [29]

    Popinet S 2003 J. Comput. Phys. 190 572Google Scholar

    [30]

    Popinet S 2009 J. Comput. Phys. 228 5838Google Scholar

    [31]

    Thoraval M J, Li Y, Thoroddsen S T 2016 Phys. Rev. E 93 033128

  • 图 1  各工况下水滴几何形态

    Fig. 1.  Water droplet geometry in different cases.

    图 2  计算区域简图

    Fig. 2.  Schematic diagram of the computational domain.

    图 3  实验摄得自由液面随时间运动过程[31]

    Fig. 3.  Experimental image of free surface movement at selected times[31].

    图 4  数值模拟自由液面随时间运动过程

    Fig. 4.  Numerical simulation of the free surface movement at selected times.

    图 5  不同工况下自由液面随时间的运动过程(Fr = 75, We = 64.4, Re = 1160, Vi = 4 m/s) (a) AR = 1.16; (b) AR = 1.00; (c) AR = 0.84

    Fig. 5.  Free surface profiles with simulated at selected times (Fr = 75, We = 64.4, Re = 1160, Vi = 4 m/s): (a) AR = 1.16; (b) AR = 1.00; (c) AR = 0.84.

    图 6  不同工况下自由液面随时间的运动过程 (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s) (a) AR = 1.33; (b) AR = 1.16; (c) AR = 1.00; (d) AR = 0.84; (e) AR = 0.67

    Fig. 6.  Free surface profiles simulated at selected times (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s): (a) AR = 1.33; (b) AR = 1.16; (c) AR = 1.00; (d) AR = 0.84; (e) AR = 0.67.

    图 7  不同时间节点下长椭圆形变水滴撞击液池涡量场和压力场等值线图(Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s, AR = 1.33)

    Fig. 7.  Vorticity and pressure contours of a prolate water droplet impacting into a water pool at selected times (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s, AR = 1.33).

    图 8  不同时间节点下长椭圆形变水滴撞击液池速度矢量场 (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s, AR = 1.33)

    Fig. 8.  Velocity field of a prolate water droplet impacting into a water pool at selected times (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s, AR = 1.33).

    图 9  自由表面下涡环的最大涡量随时间变化 (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s)

    Fig. 9.  Vorticity maximum of the vortex ring generated under the free surface with time under different cases (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s).

    图 10  自由表面下涡环的最大涡量位置随时间变化(Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s)

    Fig. 10.  Vorticity maximum location of the vortex ring generated under the free surface with time under different cases (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s).

    图 11  自由表面下涡环的最大涡量横向位置随时间变化 (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s)

    Fig. 11.  Lateral position of the vorticity maximum in the vortex ring generated under the free surface with time under different cases (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s).

    图 12  自由表面下涡环的最大涡量垂向位置随时间变化(Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s)

    Fig. 12.  Vertical position of the vorticity maximum in the vortex ring generated under the free surface with time under different cases (Fr = 112.5, We = 145, Re = 1740, Vi = 6 m/s).

  • [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [2]

    Prosperetti A, Oğuz H N 1993 Annu. Rev. Fluid Mech. 25 577Google Scholar

    [3]

    Jayaratne O W, Mason B J 1964 Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 280 545Google Scholar

    [4]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601Google Scholar

    [5]

    董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶 2018 物理学报 67 054702Google Scholar

    Dong Q Q, Hu H B, Chen S Q, He Q, Bao L Y 2018 Acta Phys. Sin. 67 054702Google Scholar

    [6]

    黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702Google Scholar

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702Google Scholar

    [7]

    Wang A B, Kuan C C, Tsai P H 2013 Phys. Fluids 25 101702Google Scholar

    [8]

    Blanchette F, Bigioni T P 2009 J. Fluid Mech. 620 333Google Scholar

    [9]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129–132

    [10]

    Thoroddsen S T, Takehara K, Nguyen H D, Etoh T G 2018 J. Fluid Mech. 848 R3Google Scholar

    [11]

    Deka H, Ray B, Biswas G, Dalal A, Tsai P H, Wang A B 2017 Phys. Fluids 29 09210

    [12]

    Bouwhuis W, Hendrix M H, van der Meer D, Snoeijer J H 2015 J. Fluid Mech. 771 503Google Scholar

    [13]

    Pumphrey H C, Elmore P A 1990 J. Fluid Mech. 220 539Google Scholar

    [14]

    Oğuz H N, Prosperetti A 1990 J. Fluid Mech. 219 143Google Scholar

    [15]

    Oğuz H N, Prosperetti A 1989 J. Fluid Mech. 203 149Google Scholar

    [16]

    Oğuz H N, Prosperetti A 1991 J. Fluid Mech. 228 417

    [17]

    Prosperetti A 1988 J. Acoust. Soc. Am. 84 1042Google Scholar

    [18]

    Deng Q, Anilkumar A V, Wang T G 2007 J. Fluid Mech. 578 119Google Scholar

    [19]

    Chen S, Guo L 2014 Chem. Eng. Sci. 109 1Google Scholar

    [20]

    Volkov R S, Kuznetsov G V, Strizhak P A 2015 Int. J. Heat Mass Transf. 85 1Google Scholar

    [21]

    Strizhak P A 2013 J. Eng. Phys. Thermophys. 86 895Google Scholar

    [22]

    Thokchom A K, Gupta A, Jaijus P J, Singh A 2014 Int. J. Heat Mass Transf. 68 67Google Scholar

    [23]

    Varaksin A Y 2013 High Temp. 51 377Google Scholar

    [24]

    Volkov R S, Vysokomornaya O V, Kuznestov G V, Strizhak P A 2013 J. Eng. Phys. Thermophys. 86 1413Google Scholar

    [25]

    Wang C Y, Zhang C B, Huang X Y, Liu X D, Chen Y P 2016 Chin. Phys. B 25 108202Google Scholar

    [26]

    丁思源, 王瑞祥, 徐荣吉, 张一灏, 蔡骥驰 2016 化工学报 67 2495

    Ding C Y, Wang R X, Xu R J, Zhang Y H, Cai J C 2016 CIESC Journal 67 2495

    [27]

    Roman B, Bico J 2010 J. Phys.Condes. Matter 22 493101Google Scholar

    [28]

    裴传康, 魏炳乾 2018 物理学报 67 224703Google Scholar

    Pei C K, Wei B Q 2018 Acta Phys. Sin. 67 224703Google Scholar

    [29]

    Popinet S 2003 J. Comput. Phys. 190 572Google Scholar

    [30]

    Popinet S 2009 J. Comput. Phys. 228 5838Google Scholar

    [31]

    Thoraval M J, Li Y, Thoroddsen S T 2016 Phys. Rev. E 93 033128

  • [1] 王孟莎, 徐强, 聂腾飞, 罗欣怡, 郭烈锦. 电解液浓度对光电极表面气泡演化及传质特性的影响. 物理学报, 2024, 73(18): 188201. doi: 10.7498/aps.73.20240533
    [2] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [3] 杨海军, 仵峰, 方海平, 胡钧, 侯铮迟. 基于加气水滴灌的土壤环境调节机理研究. 物理学报, 2019, 68(1): 019201. doi: 10.7498/aps.68.20181357
    [4] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [5] 裴传康, 魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究. 物理学报, 2018, 67(22): 224703. doi: 10.7498/aps.67.20181422
    [6] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [7] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [8] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学. 物理学报, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [9] 胡海豹, 何强, 余思潇, 张招柱, 宋东. 低温光滑壁面上水滴撞击结冰行为. 物理学报, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [10] 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动. 物理学报, 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [11] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析. 物理学报, 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [12] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [13] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [14] 史剑, 周林, 杨隆颖. 高风速下海洋飞沫水滴对拖曳系数的影响. 物理学报, 2013, 62(3): 039201. doi: 10.7498/aps.62.039201
    [15] 王成会, 程建春. 微管内气泡的受迫振动. 物理学报, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [16] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [17] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [18] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [19] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [20] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
计量
  • 文章访问数:  8929
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-14
  • 修回日期:  2019-07-08
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回