搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验室光致电离等离子体中激发过程的研究

韩波 王菲鹿 梁贵云 赵刚

引用本文:
Citation:

实验室光致电离等离子体中激发过程的研究

韩波, 王菲鹿, 梁贵云, 赵刚

Excitation processes in experimental photoionized plasmas

Han Bo, Wang Fei-Lu, Liang Gui-Yun, Zhao Gang
PDF
导出引用
  • 光致电离等离子体在宇宙中广泛存在于强辐射场附近. 近年来随着高能量密度实验装置的发展, 在实验室内也能构造出光致电离等离子体. RCF是一个基于The Flexible Atomic Code 数据的针对光致电离等离子体的辐射碰撞模型, 该模型模拟了两个光致电离实验, 其 理论结果中电离态分布和光谱与测量值符合得很好. 在理论模拟中发现, 光致电离等离子体中光致激发和碰撞激发过程对离子态布居和发射光谱都有非常重要的影响. 光致激发过程可以通过将离子激发到双激发态从而间接电离离子; 碰撞激发过程会因为电子将基态离子激发到电离截面小的单激发态而抑制光子对等离子体的电离. 光致激发过程可以加强类锂离子的类氦离子的卫线, 而碰撞激发过程会影响类氦离子谱线的线强之比.
    Photoionized plasmas widely exist nearby strong radiative sources in the universe. With the development of the high energy density facilities, photoionized plasmas related to astrophysical objects are generated in laboratories accordingly. RCF (radiative collisional code based on the flexible atomic code) is a theoretical model applied to steady-state photoionized plasmas. Its rate equation includes five groups of mutually inverse atomic processes, which are spontaneous decay and photoexcitation, electron impact excitation and deexcitation, photoionization and radiative recombination, electron impact ionization and three body recombination, autoionization and dielectronic capture. All of the atomic data are calculated by FAC (the flexible atomic code), and with four input parameters, RCF can calculate the charge distribution and emission spectrum of the plasma. RCF has well simulated the charge state distribution of a photoionizing Fe experiment on Z-facility and the measured spectrum of photoionizing Si experiment on GEKKO-XII laser facility. According to the simulation results, the importance of photoexcitation and electron impact excitation processes in the two photoionization experiments is discussed. In the photoionizing Fe experiment condition, high energy photons not only ionize the ions by photoionization directly, but also excite the ions to autoionizing levels, ionizing the ions indirectly. What is more, far from ionizing the ions, electrons even suppress the ionization of the plasma by exciting the ions to levels with small ionization cross sections. In the photoionizing Si experiment condition, because of high photoexcitation rate, strong resonance line of He-like ion and some Li-like ion lines, which have similar spontaneous decay rates as the resonance line, are emitted. Although the intercombination line of He-like ion has lower spontaneous decay rate than the resonance lines, strong recombination makes them have comparable strengthes. Electron impact excitation can influence the line ratio of He-like ion lines by affecting the distribution of 1s2l (l=s,p) levels.
      通信作者: 王菲鹿, wfl@bao.ac.cn;gzhao@bao.ac.cn ; 赵刚, wfl@bao.ac.cn;gzhao@bao.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01503)和国家自然科学基金(批准号: 11573040, 11135012, 11273032)资助的课题.
      Corresponding author: Wang Fei-Lu, wfl@bao.ac.cn;gzhao@bao.ac.cn ; Zhao Gang, wfl@bao.ac.cn;gzhao@bao.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503), and the National Natural Science Foundation of China (Grant Nos. 11573040, 11135012, 11273032).
    [1]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [2]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755

    [3]

    Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002

    [4]

    Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712

    [5]

    Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129

    [6]

    Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745

    [7]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337

    [8]

    Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107

    [9]

    Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52

    [10]

    Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53

    [11]

    Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761

    [12]

    Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994

    [13]

    Kallman T, Bautista M 2001 ApJS 133 221

    [14]

    Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675

    [15]

    Bautista M A, Kallman T R 2001 ApJS 134 139

    [16]

    Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516

    [17]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124

    [18]

    Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121

    [19]

    Porquet D, Dubau J 2000 AAS 143, 495

    [20]

    Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29

    [21]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)

    [22]

    Gu M F 2008 Can. J. Phys. 86 675

    [23]

    Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21

    [24]

    Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)

    [25]

    Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592

    [26]

    Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301

  • [1]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [2]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755

    [3]

    Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002

    [4]

    Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712

    [5]

    Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129

    [6]

    Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745

    [7]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337

    [8]

    Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107

    [9]

    Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52

    [10]

    Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53

    [11]

    Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761

    [12]

    Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994

    [13]

    Kallman T, Bautista M 2001 ApJS 133 221

    [14]

    Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675

    [15]

    Bautista M A, Kallman T R 2001 ApJS 134 139

    [16]

    Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516

    [17]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124

    [18]

    Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121

    [19]

    Porquet D, Dubau J 2000 AAS 143, 495

    [20]

    Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29

    [21]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)

    [22]

    Gu M F 2008 Can. J. Phys. 86 675

    [23]

    Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21

    [24]

    Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)

    [25]

    Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592

    [26]

    Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301

  • [1] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [2] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [3] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [4] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [5] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨. 物理学报, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [6] 付志坚, 陈其峰, 陈向荣. 部分电离金属钛和银等离子体输运性质的计算. 物理学报, 2011, 60(5): 055202. doi: 10.7498/aps.60.055202
    [7] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [8] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [9] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [10] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [11] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [12] 张发荣, 张晓丹, Amanatides E., Mataras D., 赵 静, 赵 颖. 微晶硅薄膜沉积过程中的等离子体光学与电学特性研究. 物理学报, 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [13] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [14] 李汉明, 李 钢, 李英骏, 李玉同, 张 翼, 程 涛, 聂超群, 张 杰. 绝缘阻挡放电等离子体发光光谱的特性. 物理学报, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [15] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [16] 张 霆, 丁伯江. 原子过程对极向CXRS测量影响的数值模拟. 物理学报, 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
    [17] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [18] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [19] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程. 物理学报, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  3914
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-03-02
  • 刊出日期:  2016-06-05

实验室光致电离等离子体中激发过程的研究

    基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01503)和国家自然科学基金(批准号: 11573040, 11135012, 11273032)资助的课题.

摘要: 光致电离等离子体在宇宙中广泛存在于强辐射场附近. 近年来随着高能量密度实验装置的发展, 在实验室内也能构造出光致电离等离子体. RCF是一个基于The Flexible Atomic Code 数据的针对光致电离等离子体的辐射碰撞模型, 该模型模拟了两个光致电离实验, 其 理论结果中电离态分布和光谱与测量值符合得很好. 在理论模拟中发现, 光致电离等离子体中光致激发和碰撞激发过程对离子态布居和发射光谱都有非常重要的影响. 光致激发过程可以通过将离子激发到双激发态从而间接电离离子; 碰撞激发过程会因为电子将基态离子激发到电离截面小的单激发态而抑制光子对等离子体的电离. 光致激发过程可以加强类锂离子的类氦离子的卫线, 而碰撞激发过程会影响类氦离子谱线的线强之比.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回