-
分子的高次谐波是强场超快物理的重要研究课题. 采用建立在形式散射理论基础上的频域方法计算了O2在线偏振激光场下的高次谐波, 探讨了核轴被准直在与激光传输方向垂直的平面内时, 高次谐波随核轴与光电场偏振方向所成夹角0的依赖关系. 结果表明: 各次谐波都是在0约为45时强度最大, 并有较宽的峰值宽度; 当偏离此角度, 高次谐波的强度变小; 到达平行或垂直取向时, 降到最低. 分析表明, 这是由于高次谐波的强度取决于分子基态的电子在动量空间中的电场方向的布居. 针对核轴被准直在激光传输方向与电场偏振方向所确定的平面内的情况, 计算了高次谐波随0的依赖关系, 结果与前一种情况基本相同. 分析发现, 当核轴被准直固定后, 分子绕核轴旋转的角度没有固定, 所以最后的高次谐波强度需要对不同的 时的高次谐波的贡献求和平均. 平均后相当于波函数相对于核轴旋转对称, 从而导致O2的高次谐波仅与0有关, 而与核轴被准直在哪个面上无关.High-order harmonic generation (HHG) is one of the hottest topics in strong field atomic and molecular physics. In this paper, frequency domain theory which is based on formal scattering theory is extended to study the HHG of O2 molecules under a linearly polarized single mode laser field. The dependence of HHG on the angle 0 between the laser polarization direction and nuclear axis is investigated. In our calculation, we only consider the contribution of highest occupied molecular orbital (HOMO) and use the single electron approximation. The HOMO is obtained from quantum chemical software Molpro. The intensity of the laser is 5.181014 W/cm2 and the wavelength is 800 nm. On the one hand, in the case that the nuclear axis lies in the plane perpendicular to the laser propagation direction, we find that the yields of all order harmonics increase with 0 increasing until the yields reach the maximum values when 0 is equal to about 45. Then the yields decrease with 0 increasing and have the minimum values when 0 is equal to about 90. The analysis shows that the yield of HHG is dominated by the density of electrons in HOMO along the laser polarizing direction in momentum space. On the other hand, in the case that the nuclear axis lies in the plane parallel to laser propagation direction, the dependence of HHG on 0 is the same as that when the nuclear axis is in the plane perpendicular to laser propagation direction. The reasons for the same results for the two cases lie in the following fact. The HOMO of O2 molecule has g symmetry which is not rotationally symmetric around nuclear axis. So HHG yield relies on the g extension orientation. Since the g extension orientation cannot be fixed, the HHG of O2 should be averaged over the contributions to HHG at all possible g extension orientations. This average is equivalent to that the electron density is rotationally symmetric around the nuclear axis and hence leads to the fact that the HHG yield of O2 depends on 0 rather than the plane that the nuclear axis lies in.
-
Keywords:
- high order harmonic generation of molecules /
- frequency domain scattering theory /
- molecular orientation
[1] Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901
[2] Phpmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S I, Gaeta A, Hernadez-Garcia C, Plaja L, Becker A J, Becker A J, Muranne M M, KapteynH C 2012 Science 336 1287
[3] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
[4] Yu C, He H X, Wang Y H 2014 J. Phys. B 47 055601
[5] Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805
[6] Mohebbi M 2015 Phys. Rev. A 91 023835
[7] Haessler S, Caillat J, Salieres P 2011 J. Phys. B 44 203001
[8] Lein M 2007 J. Phys. B 40 R135
[9] Bian X B, Bandrauk A D 2014 Phys. Rev. Letts. 113 193901
[10] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867
[11] Itatani J, Zeidler D, Levesque J, Spanner M, Vileneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902
[12] Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 72 033412
[13] Madsen C B, Madsen L B 2006 Phys. Rev. A 74 023403
[14] Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591
[15] Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201]
[16] Kamta G L, Bandrauk A D 2005 Phys. Rev. A 71 053407
[17] Telnov D A, Chu S I 2007 Phys. Rev. A 76 043412
[18] Lewenstein M, Balcou P, Ivanov M Y, Huillier A L, Corkum P B 1994 Phys. Rev. A 49 2118
[19] Gao L H, Li X F, Fu P M 2000 Phys. Rev. A 61 063407
[20] Kopold R, Becker W, Kleber M 1998 Phys. Rev. A 58 4022
[21] Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009 Phys. Rev. A 80 013401
-
[1] Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901
[2] Phpmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S I, Gaeta A, Hernadez-Garcia C, Plaja L, Becker A J, Becker A J, Muranne M M, KapteynH C 2012 Science 336 1287
[3] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
[4] Yu C, He H X, Wang Y H 2014 J. Phys. B 47 055601
[5] Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805
[6] Mohebbi M 2015 Phys. Rev. A 91 023835
[7] Haessler S, Caillat J, Salieres P 2011 J. Phys. B 44 203001
[8] Lein M 2007 J. Phys. B 40 R135
[9] Bian X B, Bandrauk A D 2014 Phys. Rev. Letts. 113 193901
[10] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867
[11] Itatani J, Zeidler D, Levesque J, Spanner M, Vileneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902
[12] Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 72 033412
[13] Madsen C B, Madsen L B 2006 Phys. Rev. A 74 023403
[14] Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591
[15] Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201]
[16] Kamta G L, Bandrauk A D 2005 Phys. Rev. A 71 053407
[17] Telnov D A, Chu S I 2007 Phys. Rev. A 76 043412
[18] Lewenstein M, Balcou P, Ivanov M Y, Huillier A L, Corkum P B 1994 Phys. Rev. A 49 2118
[19] Gao L H, Li X F, Fu P M 2000 Phys. Rev. A 61 063407
[20] Kopold R, Becker W, Kleber M 1998 Phys. Rev. A 58 4022
[21] Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009 Phys. Rev. A 80 013401
计量
- 文章访问数: 5948
- PDF下载量: 143
- 被引次数: 0