搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类离散时间广义系统的迭代学习控制

曹伟 郭媛 孙明

引用本文:
Citation:

一类离散时间广义系统的迭代学习控制

曹伟, 郭媛, 孙明

Iterative learning control of a class of discrete-time singular system

Cao Wei, Guo Yuan, Sun Ming
PDF
导出引用
  • 针对一类离散时间广义系统, 提出了一种离散迭代学习控制算法. 首先, 通过非奇异变换将离散时间广义系统分解为正常离散状态方程和代数方程的形式. 然后, 利用上一次迭代学习获得的前一时刻误差和当前时刻误差来修正上一次的控制量, 从而获得下一次迭代学习的新控制量, 并对算法的收敛性进行了理论证明, 给出了算法收敛的充分条件. 研究结果表明, 所提算法能够在有限时间区间内实现系统状态对期望状态的完全跟踪. 最后, 通过仿真算例进一步验证了所提算法的有效性.
    Singular systems are also called descriptor systems. Compared with normal systems, singular systems have become one of effective tools which can describe and characterize varieties of real systems, because they can better describe physical properties of the systems. Up to now, the analyses and syntheses of singular systems have been widespread applied to linear matrix inequality (LMI) method. The method requires known systems to have accurate mathematical model information, however, real systems have difficulties in obtaining their accurate mathematical models, owing to the fact that real systems are frequently subjected to all kinds of interferences, uncertainties, and nonlinear factors. Specially, in the case of singular systems, obtained LMI conditions often have a constraint equation or LMI is semi-definite, which makes it more difficult to solve LMI. Therefore, in order to avoid the above two problems occurring in settling state tracking issue for singular systems, in the meantime, for convenience of computating control algorithm and information storage, in this paper we propose a discrete-time iterative learning control algorithm for a class of discrete-time singular system with repetitive running characteristics in finite time interval. The specific process is divided into two steps. First, the class of discrete-time singular system is decomposed into normal discrete-time state equation and algebraic equation form by nonsingular transformation. Accordingly, the singular system state is also decomposed into two parts. Among them, the dimension of the first part state is equal to singular matrix rank and another is equal to system dimension minus singular matrix rank. In addition, the control law of last iterative learning is modified by using two tracking errors at two different times: one error is real-time tracking error generated from the comparison between the first part state and its desired state and another is tracking error at a previous time generated from comparison between the second part state and its desired state. And thus a new control law of next iterative learning is obtained, such that, as for any given real singular system, its state may completely track the desired state as long as selected learning gain can satisfy the convergence condition of the algorithm. Further, the convergence of the control algorithm is theoretically proved by compression mapping method, and thus its sufficient convergence condition is given in the sense of -norm. The results indicate that the proposed iterative learning control algorithm can make system state realize the perfect tracking of desired state as iteration number gradually increases in finite time interval, and the convergence of the algorithm only depends on system parameters and learning gain rather than initial value of control variable. The simulation example finally verifies the effectiveness of the proposed algorithm.
      通信作者: 曹伟, yiyuqq168@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61100103)和齐齐哈尔大学青年教师科研启动基金重点项目(批准号: 2014k-Z15)资助的课题.
      Corresponding author: Cao Wei, yiyuqq168@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61100103) and the Program of Starting Support for Young Teachers of Qiqihar University (Grant No. 2014k-Z15).
    [1]

    Lin C, Wang Q G, Lee T H 2005 IEEE Trans. Autom. Control 50 515

    [2]

    Masubuchi I 2007 Automatica 43 339

    [3]

    Xin Z D 2013 IET Control Theory Appl. 7 2028

    [4]

    Zhou J, Zhang Q L, Men B 2014 Int. J. Robust. Nonlinear Control 24 97

    [5]

    Inoue M, Wada T, Ikeda M 2015 Automatica 59 164

    [6]

    Gao Z R, Shen Y X, Ji Z C 2012 Acta Phys. Sin. 61 120203 (in Chinese) [高在瑞, 沈艳霞, 纪志成 2012 物理学报 61 120203]

    [7]

    Uchiyama M 1978 Trans. Soc. Instr. Control Eng. 14 706

    [8]

    Arimoto S, Kawamura S, Miyazaki F 1984 J. Robotic Syst. 1 123

    [9]

    Yang S P, Xu J X, Huang D Q 2015 Asian J. Control 17 2091

    [10]

    Meng D Y, Du W, Jia Y M 2015 IET Control Theory Appl. 9 2084

    [11]

    Sun H Q, Alleyne A G 2014 Automatica 50 141

    [12]

    Huang D Q, Xu J X, Li X F 2013 Automatica 49 2397

    [13]

    Tan Y, Xu J X, Norrlof M 2011 Automatica 47 2412

    [14]

    Xu J X, Jin X 2013 IEEE Trans. Autom. Control 58 1322

    [15]

    Yin C K, Xu J X, Hou Z S 2010 IEEE Trans. Autom. Control 55 2655

    [16]

    Cao W, Sun M 2014 Acta Phys. Sin. 63 020201 (in Chinese) [曹伟, 孙明 2014 物理学报 63 020201]

    [17]

    Piao F X, Zhang Q L, Wang Z F 2007 Acta Autom. Sin. 33 659 (in Chinese) [朴凤贤, 张庆灵, 王哲峰 2007 自动化学报 33 659]

    [18]

    Tian S P, Zhou X J 2012 J. Syst. Sci. Math. Sci. 32 731 (in Chinese) [田森平, 周秀锦 2012 系统科学与数学 32 731]

    [19]

    Piao F X, Zhang Q L 2007 Control and Decision 22 349 (in Chinese) [朴凤贤, 张庆灵 2007 控制与决策 22 349]

    [20]

    Li B W 2009 J. Wuhan Univ. (Natural Sci. Edition) 55 391 (in Chinese) [李必文 2009 武汉大学学报(理学版) 55 391]

    [21]

    Hu T, Tian S P, Luo Y B 2014 26th Chinese Control and Decision Conference (CCDC) Changsha, China May 31-June 2, 2014 p2412

    [22]

    Yin S, Luo H, Ding S 2014 IEEE Trans. Ind. Electron 61 2402

    [23]

    Yin S, Ding S X, Haghani A 2012 J. Process Control 22 1567

    [24]

    Hu A H, Shao H Y, Liu D 2015 Chin. Phys. B 24 098902

  • [1]

    Lin C, Wang Q G, Lee T H 2005 IEEE Trans. Autom. Control 50 515

    [2]

    Masubuchi I 2007 Automatica 43 339

    [3]

    Xin Z D 2013 IET Control Theory Appl. 7 2028

    [4]

    Zhou J, Zhang Q L, Men B 2014 Int. J. Robust. Nonlinear Control 24 97

    [5]

    Inoue M, Wada T, Ikeda M 2015 Automatica 59 164

    [6]

    Gao Z R, Shen Y X, Ji Z C 2012 Acta Phys. Sin. 61 120203 (in Chinese) [高在瑞, 沈艳霞, 纪志成 2012 物理学报 61 120203]

    [7]

    Uchiyama M 1978 Trans. Soc. Instr. Control Eng. 14 706

    [8]

    Arimoto S, Kawamura S, Miyazaki F 1984 J. Robotic Syst. 1 123

    [9]

    Yang S P, Xu J X, Huang D Q 2015 Asian J. Control 17 2091

    [10]

    Meng D Y, Du W, Jia Y M 2015 IET Control Theory Appl. 9 2084

    [11]

    Sun H Q, Alleyne A G 2014 Automatica 50 141

    [12]

    Huang D Q, Xu J X, Li X F 2013 Automatica 49 2397

    [13]

    Tan Y, Xu J X, Norrlof M 2011 Automatica 47 2412

    [14]

    Xu J X, Jin X 2013 IEEE Trans. Autom. Control 58 1322

    [15]

    Yin C K, Xu J X, Hou Z S 2010 IEEE Trans. Autom. Control 55 2655

    [16]

    Cao W, Sun M 2014 Acta Phys. Sin. 63 020201 (in Chinese) [曹伟, 孙明 2014 物理学报 63 020201]

    [17]

    Piao F X, Zhang Q L, Wang Z F 2007 Acta Autom. Sin. 33 659 (in Chinese) [朴凤贤, 张庆灵, 王哲峰 2007 自动化学报 33 659]

    [18]

    Tian S P, Zhou X J 2012 J. Syst. Sci. Math. Sci. 32 731 (in Chinese) [田森平, 周秀锦 2012 系统科学与数学 32 731]

    [19]

    Piao F X, Zhang Q L 2007 Control and Decision 22 349 (in Chinese) [朴凤贤, 张庆灵 2007 控制与决策 22 349]

    [20]

    Li B W 2009 J. Wuhan Univ. (Natural Sci. Edition) 55 391 (in Chinese) [李必文 2009 武汉大学学报(理学版) 55 391]

    [21]

    Hu T, Tian S P, Luo Y B 2014 26th Chinese Control and Decision Conference (CCDC) Changsha, China May 31-June 2, 2014 p2412

    [22]

    Yin S, Luo H, Ding S 2014 IEEE Trans. Ind. Electron 61 2402

    [23]

    Yin S, Ding S X, Haghani A 2012 J. Process Control 22 1567

    [24]

    Hu A H, Shao H Y, Liu D 2015 Chin. Phys. B 24 098902

  • [1] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [2] 曹伟, 郭媛, 孙明. 基于迭代学习的离散切换系统故障估计. 物理学报, 2014, 63(18): 180202. doi: 10.7498/aps.63.180202
    [3] 曹伟, 孙明. 时变离散切换系统的迭代学习控制. 物理学报, 2014, 63(2): 020201. doi: 10.7498/aps.63.020201
    [4] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, 2013, 62(14): 148702. doi: 10.7498/aps.62.148702
    [5] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解. 物理学报, 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [6] 徐超, 李元成. 奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量. 物理学报, 2013, 62(17): 171101. doi: 10.7498/aps.62.171101
    [7] 陈志旺, 刘文龙. Hénon混沌系统广义预测控制无静差快速算法. 物理学报, 2011, 60(1): 010512. doi: 10.7498/aps.60.010512
    [8] 孙常春, 方勃, 黄文虎. 基于线性状态反馈的混沌系统全局控制. 物理学报, 2011, 60(11): 110503. doi: 10.7498/aps.60.110503
    [9] 李广成, 陈雷明, 王东晓, 武大勇. 广义Birkhoff自治系统平衡状态的流形稳定性. 物理学报, 2010, 59(5): 2932-2934. doi: 10.7498/aps.59.2932
    [10] 李彦敏, 梅凤翔. 一类广义Birkhoff系统的广义正则变换. 物理学报, 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219
    [11] 温淑焕, 王哲, 刘福才. Hénon混沌系统的自适应广义预测控制快速算法. 物理学报, 2009, 58(6): 3753-3758. doi: 10.7498/aps.58.3753
    [12] 吴忠强, 邝钰. 多涡卷混沌系统的广义同步控制. 物理学报, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [13] 刘福才, 梁晓明, 宋佳秋. 广义Hénon混沌系统的自适应双模控制与同步. 物理学报, 2008, 57(3): 1458-1464. doi: 10.7498/aps.57.1458
    [14] 马跃超, 张庆灵. 不确定广义组合大系统的分散输出反馈鲁棒镇定及脉冲分析. 物理学报, 2007, 56(4): 1958-1965. doi: 10.7498/aps.56.1958
    [15] 吴俊林, 黄新民. 非广延反应扩散系统的广义主方程. 物理学报, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [16] 刘福才, 梁晓明. Hénon混沌系统的广义预测控制与同步快速算法. 物理学报, 2005, 54(10): 4584-4589. doi: 10.7498/aps.54.4584
    [17] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步. 物理学报, 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [18] 李爱民, 张 莹, 李子平. 非完整约束奇异广义力学系统的Poincaré-Cartan积分. 物理学报, 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [19] 张家树, 肖先赐. 连续混沌系统的非线性自适应预测跟踪控制. 物理学报, 2001, 50(11): 2092-2096. doi: 10.7498/aps.50.2092
    [20] 伍维根, 古天祥. 混沌系统的非线性反馈跟踪控制. 物理学报, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
计量
  • 文章访问数:  6625
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-06
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-06-05

/

返回文章
返回