搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱熔体对流对定向凝固中棒状共晶生长的影响

徐小花 陈明文 王自东

引用本文:
Citation:

弱熔体对流对定向凝固中棒状共晶生长的影响

徐小花, 陈明文, 王自东

Effect of weak convection on the rod eutectic growth in direction solidification

Xu Xiao-Hua, Chen Ming-Wen, Wang Zi-Dong
PDF
导出引用
  • 利用渐近方法求出在弱对流熔体中定向凝固棒状共晶生长的浓度场的渐近解, 研究了弱熔体对流对定向凝固中棒状共晶生长的影响. 结果表明, 弱熔体对流对定向凝固中棒状共晶生长有显著的作用; 平均界面过冷度不仅与棒状共晶的棒间距、生长速度有关, 还与流动强度有关; 当生长速度一定时, 随着流动强度增大, 棒状共晶的平均界面过冷度减小. 利用最小过冷原则, 获得棒间距与生长速度和流动强度的关系. 结果表明, 当生长速度比较小时, 随着流动强度增大, 棒状共晶的棒间距增大; 当生长速度比较大时, 随着流动强度增大, 棒状共晶的棒间距变化减弱; 棒状共晶的生长速度越小, 流动对棒状共晶生长的影响越大. 利用本文的解析结果计算在对流条件下Al-Cu共晶的棒间距, 结果显示随着转速增大或径向距离增大, 共晶的间距增大, 这与Junze 等的实验结果相符合.
    Eutectic solidification is very important for exploring new materials in which the periodic multiphase structures may have a remarkable or enhanced functionality. An asymptotic solution of the solute diffusion equation with flow terms for the rod eutectic in the weak convective melt in directional solidification is obtained by using the asymptotic method, and the effect of weak convection on the rod eutectic growth is studied. The so-called weak convection is defined in this paper as the condition in which the intensity of convection flow ahead of the solid liquid interface is relatively small. The relationships between the intensity of convection flow, the growth velocity, the rod spacing and the average interface undercooling can be derived. The result shows that the weak convection has a significant effect on the rod eutectic growth in directional solidification. The average interface undercooling is related to not only the rod spacing and the growth velocity, but also the intensity of convection flow. When specifically focusing on the effect of the intensity of convection flow on the average undercooling in directional solidification, the growth velocity is kept the same. For a certain growth velocity, the average interface undercooling of the rod eutectic decreases as the intensity of convection flow increases, especially at low growth velocity. The rod spacing, which is formed by solidified melt of eutectic or near-eutectic composition, plays a very important role in determining the properties of final products. In this study, by minimizing the average interface undercooling it is found that the rod spacing is a function of growth velocity and the intensity of convection flow. It is shown that for the small growth velocity, the rod spacing increases as the intensity of convection flow increases; for the large growth velocity, the rod spacing increases very slowly as the intensity of convection flow increases. In other words, the smaller the growth velocity, the greater the effect of the weak convection flow on the rod spacing. Our analytical result is compared with the results from other models, and it is also used to calculate the practical case such as the rod spacing of the typical eutectic alloy, Al-Cu eutectic, under the condition of weak forced convection induced by the accelerated crucible rotation technique. It is shown that the rod spacing increases as the rotation rate or the radial position increases, which is consistent with the experimental results obtained by Junze et al.
    [1]

    Jackson K A, Hunt J D 1966 Trans. Metall. Soc. AIME 236 1129

    [2]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [3]

    Liu J, Elliott R 1995 J. Cryst. Growth 148 406

    [4]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [5]

    Meng G H, Lin X 2014 Acta Phys. Sin. 63 068104 (in Chinese) [孟广慧, 林鑫 2014 物理学报 63 068104]

    [6]

    Wang L, Wang N, Ji L, Yao W J 2013 Acta Phys. Sin. 62 216801 (in Chinese) [王雷, 王楠, 冀林, 姚文静 2013 物理学报 62 216801]

    [7]

    Ravishankar P S, Wilcox W R, Larson D J 1980 Acta Metall. 28 1583

    [8]

    Baskaran V, Eisa G F, Wilcox W R 1984 Computational Methods and Experimental Measurements (Berlin Heidelberg: Springer) pp123-134

    [9]

    Kumar P, Chakraborty S, Srinivasan K, Dutta P 2002 Metall. Mater. Trans. B 33 605

    [10]

    Thiele R, Anglart H 2013 Nucl. Eng. Des. 254 111

    [11]

    Pirich R G, Larson D J 1981 MRS Proceedings (Cambridge: Cambridge University Press) p523

    [12]

    Muller G, Kyr P 1984 Results of Spacelab 1, Proceeding of the 5th European Symposium on Materials Sciences under Microgravity Schloss Elmau, FRG, November 5-7, 1984 p141

    [13]

    Quenisset J M, Naslain R 1981 J. Cryst. Growth 54 465

    [14]

    Baskaran V, Wilcox W R 1984 J. Cryst. Growth 67 343

    [15]

    Caram R, Chandrasekhar S, Wilcox W R 1990 J. Cryst. Growth 106 294

    [16]

    Ma D, Jie W Q, Li Y, Ng S C 1998 Acta Mater. 46 3203

    [17]

    Coriell S R, McFadden G B, Mitchell W F, Murray B T, Andrews J B, Arikawa Y 2001 J. Cryst. Growth 224 145

    [18]

    Zhang W Q, Yang Y S, Hu Z Q 1998 Acta Metall. Sin. 34 1 (in Chinese) [张伟强, 杨院生, 胡壮麒 1998 金属学报 34 1]

    [19]

    Zhang W Q, Fu H, Yang Y S, Hu Z Q 1998 J. Cryst. Growth 194 263

    [20]

    Greenspan H P 1990 The Theory of Rotating Fluids (Cambridge: Cambridge University Press) p354

    [21]

    Junze J, Kobayashi K F, Shingu P H 1984 Metall. Trans. A 15 307

  • [1]

    Jackson K A, Hunt J D 1966 Trans. Metall. Soc. AIME 236 1129

    [2]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [3]

    Liu J, Elliott R 1995 J. Cryst. Growth 148 406

    [4]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [5]

    Meng G H, Lin X 2014 Acta Phys. Sin. 63 068104 (in Chinese) [孟广慧, 林鑫 2014 物理学报 63 068104]

    [6]

    Wang L, Wang N, Ji L, Yao W J 2013 Acta Phys. Sin. 62 216801 (in Chinese) [王雷, 王楠, 冀林, 姚文静 2013 物理学报 62 216801]

    [7]

    Ravishankar P S, Wilcox W R, Larson D J 1980 Acta Metall. 28 1583

    [8]

    Baskaran V, Eisa G F, Wilcox W R 1984 Computational Methods and Experimental Measurements (Berlin Heidelberg: Springer) pp123-134

    [9]

    Kumar P, Chakraborty S, Srinivasan K, Dutta P 2002 Metall. Mater. Trans. B 33 605

    [10]

    Thiele R, Anglart H 2013 Nucl. Eng. Des. 254 111

    [11]

    Pirich R G, Larson D J 1981 MRS Proceedings (Cambridge: Cambridge University Press) p523

    [12]

    Muller G, Kyr P 1984 Results of Spacelab 1, Proceeding of the 5th European Symposium on Materials Sciences under Microgravity Schloss Elmau, FRG, November 5-7, 1984 p141

    [13]

    Quenisset J M, Naslain R 1981 J. Cryst. Growth 54 465

    [14]

    Baskaran V, Wilcox W R 1984 J. Cryst. Growth 67 343

    [15]

    Caram R, Chandrasekhar S, Wilcox W R 1990 J. Cryst. Growth 106 294

    [16]

    Ma D, Jie W Q, Li Y, Ng S C 1998 Acta Mater. 46 3203

    [17]

    Coriell S R, McFadden G B, Mitchell W F, Murray B T, Andrews J B, Arikawa Y 2001 J. Cryst. Growth 224 145

    [18]

    Zhang W Q, Yang Y S, Hu Z Q 1998 Acta Metall. Sin. 34 1 (in Chinese) [张伟强, 杨院生, 胡壮麒 1998 金属学报 34 1]

    [19]

    Zhang W Q, Fu H, Yang Y S, Hu Z Q 1998 J. Cryst. Growth 194 263

    [20]

    Greenspan H P 1990 The Theory of Rotating Fluids (Cambridge: Cambridge University Press) p354

    [21]

    Junze J, Kobayashi K F, Shingu P H 1984 Metall. Trans. A 15 307

  • [1] 王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆. 1 MHz,273 W掺镱棒状光纤啁啾脉冲放大系统. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240300
    [2] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [3] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明. 物理学报, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [4] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [5] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [6] 王雷, 王楠, 冀林, 姚文静. 高生长速度条件下的层片棒状共晶转变机理研究. 物理学报, 2013, 62(21): 216801. doi: 10.7498/aps.62.216801
    [7] 曹斌, 林鑫, 黄卫东. 远场来流条件下过冷熔体球晶生长的稳定性. 物理学报, 2011, 60(6): 066403. doi: 10.7498/aps.60.066403
    [8] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响. 物理学报, 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [9] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [10] 苏进, 欧阳洁, 王晓东. 棒状分子聚合物溶液的微宏观数值模拟. 物理学报, 2010, 59(5): 3362-3369. doi: 10.7498/aps.59.3362
    [11] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [12] 佟金刚, 吴春芳, 王育华, 陈佐惠. 纳米棒状GdPO4:Eu3+荧光粉的合成及其发光性能的研究. 物理学报, 2009, 58(1): 585-589. doi: 10.7498/aps.58.585
    [13] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 共晶形态层—棒转变的多相场法研究. 物理学报, 2009, 58(1): 650-654. doi: 10.7498/aps.58.650
    [14] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [15] 陈明文, 王自东, 孙仁济. 远场来流对过冷熔体中球状晶体生长的影响. 物理学报, 2007, 56(3): 1819-1824. doi: 10.7498/aps.56.1819
    [16] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [17] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [18] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
    [19] 闵乃本, 周方桥. LiNbO3晶体-熔体界面的失稳及向胞状界面演化的实验研究. 物理学报, 1986, 35(12): 1603-1608. doi: 10.7498/aps.35.1603
    [20] 刘德森. 聚焦透镜棒的色差分析. 物理学报, 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
计量
  • 文章访问数:  4547
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-04-20
  • 刊出日期:  2016-07-05

/

返回文章
返回