搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼叶片回波建模与闪烁现象机理分析

陈永彬 李少东 杨军 曹芙蓉

引用本文:
Citation:

旋翼叶片回波建模与闪烁现象机理分析

陈永彬, 李少东, 杨军, 曹芙蓉

Rotor blades radar echo modeling and its mechanism analysis

Chen Yong-Bin, Li Shao-Dong, Yang Jun, Cao Fu-Rong
PDF
导出引用
  • 对旋翼叶片回波建模与闪烁现象进行了综合研究. 基于散射点散射系数和分布情况, 构建了旋翼叶片回波的散射点模型, 并分析了散射点分布对回波的影响; 在此基础上研究了回波时域闪烁现象的物理散射机理, 并结合时频分析和横向分辨率分析了微多普勒特征及时频域闪烁现象; 对两类不同分布间隔的散射点模型进行了仿真, 并与积分模型进行对比性实验, 结果验证了闪烁现象物理分析的合理性. 该研究成果在旋翼目标的探测识别领域具有一定的理论与应用价值.
    Since the rotorcraft can easily be recognized by using the micro-Doppler (m-D) signature of rotor blades, the m-D effect induced by micro-motion dynamics plays an important role in target recognition and classification. However, the existing researches on the rotor blades pay little attention to the mechanism of the time-domain and time-frequency-domain flash phenomena. To comprehensively explain the flash phenomena from physics, the modeling of the rotor blades and the mechanism of the flash phenomena are studied in this paper. Firstly, for the rotor blades, the target cannot be represented as a rigid, homogeneous line nor several points. Taking the scattering coefficients and the interval of adjacent scattering points (the scattering point distribution on the blade) into consideration, the scattering point model of the rotor blade echo is established, and the influence of the scattering point distribution on the radar echo is analyzed as well. The detailed mathematic analysis and comparison results show that the conventional integral model of the rotor blade is only a special case of the scattering point model. Furthermore, In the case where the scattering point model is approximately equivalent to the conventional integral model, the critical interval of adjacent scattering points is deduced by mathematic analysis. Secondly, on the basis of the proposed model above, the physical mechanism of the time-domain and time-frequency-domain flash phenomena is studied from the viewpoint of the electromagnetic (EM) scattering. On the one hand, considering the EM scattering and scattering point distribution, the mechanism of the time-domain flashes is analyzed. Ideally, when the rotor blade is at the vertical position relative to the radar line of sight, i.e., at the flash time, the blade has the strongest echo. At this moment, the radar echo consists of echoes of all scattering points, thus inducing the time-domain flashes. At the non-flash time, the scattering points at the tip of blade and hub of rotor have stronger scattering intensities, so the echo is much weaker than that at the flash time. On the other hand, the time-frequency analysis and the cross range resolution are simultaneously used to analyze the mechanism of the time-frequency-domain flashes in the m-D signature. The m-D signature of the rotor blades consists of three parts: the time-frequency-domain flashes, the sinusoidal Doppler curves, and the zero-frequency band. At the flashes time, the Doppler frequency of adjacent scattering points cannot be distinguished, thus the m-D signature has the frequency band caused by all scattering points, i.e., the time-frequency-domain flashes appear. At the non-flash time, the sinusoidal Doppler curves and the zero-frequency band are caused by the scattering points at the tip of blade induced by the scattering points at the hub of rotor respectively. Finally, the simulation results about the scattering point model with the different intervals of adjacent scattering points show that the effectiveness of the proposed model and the correctness of theoretical analysis.
      通信作者: 杨军, yangjem@126.com
      Corresponding author: Yang Jun, yangjem@126.com
    [1]

    Chen V C 2011 The Micro-Doppler Effect in Radar (Boston: Artech House) pp105-127

    [2]

    Chen V C, Tahmoush D, Miceli W J 2014 Radar Micro-Doppler Signature Processing and Applications (London: The Institution of Engineering and Technology) pp187-227

    [3]

    Gao H W, Xie L G, Wen S L, Kuang Y 2010 IEEE Trans. Aero. Elec. Sys. 46 1969

    [4]

    Lei P, Sun J P, Wang J, Hong W 2012 IEEE Trans. Geos. Remo. Sens. 50 3776

    [5]

    Chen V C, Li F Y, Ho S S, Wechsler H 2006 IEEE Trans. Aero. Elec. Sys. 42 2

    [6]

    Chen V C 2008 IET Sig. Proc. 2 291

    [7]

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301 (in Chinese) [王童, 童创明, 李西敏, 李昌泽 2015 物理学报 64 210301]

    [8]

    Chen P, Hao S Q, Zhao N X, Zhou J G 2013 Infrared and Laser Engineering 42 3259 (in Chinese) [陈鹏, 郝士琦, 赵楠翔, 周建国 2013 红外与激光工程 42 3259]

    [9]

    Ye S B, Xiong J J 2006 Acta Aeronaut. Astronaut. Sin. 27 816 (in Chinese) [叶少波, 熊峻江 2006 航空学报 27 816]

    [10]

    Jiang X W, Zhao Q J, Meng C 2014 Acta Aeronaut. Astronaut. Sin. 35 3123 (in Chinese) [蒋相闻, 招启军, 孟晨 2014 航空学报 35 3123]

    [11]

    Huo K, Liu Y X, Hu J M, Jiang W D, Li X 2011 IEEE Trans. Geos. Remo. Sens. 49 1464

    [12]

    Li J, Pi Y M, Yang X B 2010 J. Infra. Milli. Terahz. Waves 31 319

    [13]

    Li P, Wang D C, Chen J L 2013 Sig. Image Video Proc. 7 1239

    [14]

    Ji W J, Tong C M 2012 Acta Phys. Sin. 61 160301 (in Chinese) [姬伟杰, 童创明 2012 物理学报 61 160301]

    [15]

    Zhang L X, Li N J, Hu C F, Li P 2009 Radar Target Scattering Characteristic Test and Diagnostic Imaging (Beijing: China Aviation Press) pp2-4 (in Chinese) [张麟兮, 李南京, 胡楚锋, 李萍 2009 雷达目标散射特性测试与成像诊断(北京: 中国航空出版社) 第 2-4 页]

  • [1]

    Chen V C 2011 The Micro-Doppler Effect in Radar (Boston: Artech House) pp105-127

    [2]

    Chen V C, Tahmoush D, Miceli W J 2014 Radar Micro-Doppler Signature Processing and Applications (London: The Institution of Engineering and Technology) pp187-227

    [3]

    Gao H W, Xie L G, Wen S L, Kuang Y 2010 IEEE Trans. Aero. Elec. Sys. 46 1969

    [4]

    Lei P, Sun J P, Wang J, Hong W 2012 IEEE Trans. Geos. Remo. Sens. 50 3776

    [5]

    Chen V C, Li F Y, Ho S S, Wechsler H 2006 IEEE Trans. Aero. Elec. Sys. 42 2

    [6]

    Chen V C 2008 IET Sig. Proc. 2 291

    [7]

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301 (in Chinese) [王童, 童创明, 李西敏, 李昌泽 2015 物理学报 64 210301]

    [8]

    Chen P, Hao S Q, Zhao N X, Zhou J G 2013 Infrared and Laser Engineering 42 3259 (in Chinese) [陈鹏, 郝士琦, 赵楠翔, 周建国 2013 红外与激光工程 42 3259]

    [9]

    Ye S B, Xiong J J 2006 Acta Aeronaut. Astronaut. Sin. 27 816 (in Chinese) [叶少波, 熊峻江 2006 航空学报 27 816]

    [10]

    Jiang X W, Zhao Q J, Meng C 2014 Acta Aeronaut. Astronaut. Sin. 35 3123 (in Chinese) [蒋相闻, 招启军, 孟晨 2014 航空学报 35 3123]

    [11]

    Huo K, Liu Y X, Hu J M, Jiang W D, Li X 2011 IEEE Trans. Geos. Remo. Sens. 49 1464

    [12]

    Li J, Pi Y M, Yang X B 2010 J. Infra. Milli. Terahz. Waves 31 319

    [13]

    Li P, Wang D C, Chen J L 2013 Sig. Image Video Proc. 7 1239

    [14]

    Ji W J, Tong C M 2012 Acta Phys. Sin. 61 160301 (in Chinese) [姬伟杰, 童创明 2012 物理学报 61 160301]

    [15]

    Zhang L X, Li N J, Hu C F, Li P 2009 Radar Target Scattering Characteristic Test and Diagnostic Imaging (Beijing: China Aviation Press) pp2-4 (in Chinese) [张麟兮, 李南京, 胡楚锋, 李萍 2009 雷达目标散射特性测试与成像诊断(北京: 中国航空出版社) 第 2-4 页]

  • [1] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究. 物理学报, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [2] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析. 物理学报, 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [3] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [4] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究. 物理学报, 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [5] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [6] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用. 物理学报, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [7] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性. 物理学报, 2012, 61(23): 234101. doi: 10.7498/aps.61.234101
    [8] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [9] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究. 物理学报, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [10] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究. 物理学报, 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [11] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究. 物理学报, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [12] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [13] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [14] 王运华, 张彦敏, 郭立新. 平面上方二维介质目标对高斯波束的电磁散射研究. 物理学报, 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [15] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [16] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解. 物理学报, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [17] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [18] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [20] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
计量
  • 文章访问数:  7259
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-11
  • 修回日期:  2016-04-06
  • 刊出日期:  2016-07-05

/

返回文章
返回